# Module description

Master of Science (M.Sc.) in the subject Informatik/Computer Science - Major Field (Examination regulations version 2020)



universität freiburg

# Table of Contents

| Prolog                                                                                                                               | 4  |
|--------------------------------------------------------------------------------------------------------------------------------------|----|
| Master module                                                                                                                        | 13 |
| Advanced Lectures                                                                                                                    | 15 |
| Algorithms Theory                                                                                                                    |    |
| Datenbanken und Informationssysteme / Data Bases and Information Systems                                                             |    |
| Foundations of Artificial Intelligence                                                                                               |    |
| Image Processing and Computer Graphics                                                                                               |    |
| Machine Learning                                                                                                                     |    |
| Rechnerarchitektur / Computer Architecture                                                                                           |    |
| Softwaretechnik / Software Engineering                                                                                               |    |
| Specialization Course                                                                                                                |    |
| Advanced Algorithms                                                                                                                  |    |
| Advanced Computer Graphics                                                                                                           |    |
| Advanced Deep Learning                                                                                                               |    |
| Algorithms for Wireless Communication                                                                                                |    |
| Automated Machine Learning                                                                                                           |    |
| Bioinformatics I                                                                                                                     |    |
| Bioinformatics II                                                                                                                    |    |
| Blockchain and Cryptocurrencies                                                                                                      |    |
| Compilerbau / Compiler Construction                                                                                                  |    |
| Computer Vision                                                                                                                      |    |
| Concurrency, Theory and Practice                                                                                                     |    |
| Cyber-Physikalische Systeme - Diskrete Modelle / Cyber-Physical Systems – Discrete Models                                            |    |
| Cyber-Physical Systems – Program Verification                                                                                        |    |
| Debugging and Fuzzing                                                                                                                |    |
| Digital Health (DH)                                                                                                                  |    |
| Echtzeitbetriebssysteme und Worst-Case-Execution-Times / Real-Time Operating Systems and                                             |    |
| Case Execution Times                                                                                                                 |    |
| Einführung in die Kryptographie / Introduction to Cryptography                                                                       |    |
| Einführung in Embedded Systems / Introduction to Embedded Systems                                                                    |    |
| Embedded Computing Entrepreneurship (2ES)                                                                                            |    |
| Foundations of Deep Learning                                                                                                         |    |
| Funktionale Programmierung / Functional Programming<br>Grundlagen von Programmiersprachen / Essentials of Programming Languages      |    |
|                                                                                                                                      |    |
| Hardware Security and Trust                                                                                                          |    |
| High-throughput data analysis with Galaxy<br>High-performance computing: Distributed-memory parallelization on GPUs and accelerators |    |
|                                                                                                                                      |    |
| High-Performance Computing: Fluid Mechanics with Python<br>High-Performance Computing: Molecular Dynamics with C++                   |    |
| Information Retrieval.                                                                                                               |    |
| Interactive Proof Systems and Cryptographic Protocols                                                                                |    |
| Introduction to data driven life sciences                                                                                            |    |
| Isabelle/HOL: programming, verified!                                                                                                 |    |
| Maschinelles Lernen in den Lebenswissenschaften / Machine Learning in Life Science                                                   |    |
| Modelling and System Identification                                                                                                  |    |
| Netzwerkalgorithmen / Network Algorithms                                                                                             |    |
| Numerical Optimal Control in Science and Engineering                                                                                 |    |
| Numerical Optimization                                                                                                               |    |
| Peer-to-Peer Netzwerke / Peer-to-Peer Networks                                                                                       |    |
| Probabilistic Graphical Models                                                                                                       |    |
|                                                                                                                                      |    |

| Reinforcement Learning                                                | 227 |
|-----------------------------------------------------------------------|-----|
| RNA Bioinformatik / RNA Bioinformatics                                |     |
| Robot Mechanics                                                       | 237 |
| SAT Solving                                                           |     |
| Simulation in Computer Graphics                                       | 246 |
| Soft Robotics                                                         | 251 |
| Statistical Pattern Recognition                                       | 255 |
| Test und Zuverlässigkeit / Test and Reliability                       |     |
| Verifikation Digitaler Schaltungen / Verification of Digital Circuits |     |
| Verteilte Systeme / Distributed Systems                               |     |
| Wearable and Implantable Computing (WIC)                              | 275 |
| Windenergiesysteme / Wind Energy Systems                              | 279 |
| Seminars                                                              |     |
| Seminar 1                                                             |     |
| Seminar 2                                                             | 287 |
| Lab Course                                                            | 290 |
| Praktikum                                                             |     |
| Customized Course Selection                                           | 294 |
| Advanced Lecture in Customized Course Selection                       | 295 |
| Specialization Course in Customized Course Selection                  | 296 |
| Courses offered in other departments of the University                |     |
| Applied Bioinformatics                                                |     |
| Kognitionswissenschaften                                              | 299 |
| Mathematik                                                            | 300 |
| Medizin                                                               |     |
| Microsystems Engineering                                              |     |
| Neuroscience                                                          |     |
| Physik                                                                |     |
| Psychologie                                                           |     |
| Sustainable Systems Engineering                                       |     |
| Economics                                                             |     |
| Weitere genehmigte Module/Veranstaltungen im fachfremden Bereich      |     |
| Study Project                                                         |     |
| Studienprojekt                                                        |     |
| Studienprojekt KI                                                     |     |
| Studienprojekt CPS                                                    |     |
| Epilogue                                                              | 319 |

# Prolog

This module handbook is based on the current version of the examination regulations for the Master of Science degree program in the 2020 version, subject-specific provisions for the major in Informatik / Computer Science. These provisions define the course content structured in the modules and the curriculum structured in terms of semesters and areas.

Modules consist of different elements: Courses (e.g. lectures, exercises, seminars, etc.) and coursework (pass/fail assessments) or examinations (graded assessments). The module descriptions explain in more detail both the course elements and the required coursework and examinations to demonstrate the acquisition of competencies.

In each case, the regular course and examination assessments are described; should it become necessary to deviate from the described assessments at short notice due to unforeseen circumstances, the substitute assessments will be announced in the first week of the lecture period at the latest.

For successfully completed modules, credit points are awarded, the so-called ECTS credit points according to the "European Credit Transfer and Accumulation System". These credits indicate the weighting of a course in a module as well as the workload associated with the course. One credit point corresponds to an effort of approx. 30 working hours per semester for an average student. A student should collect approx. 30 ECTS credits per semester.

The standard period of study is four semesters. A total of 120 ECTS points must be acquired in the Master of Science Informatik / Computer Science.

# **Regulations regarding attendance:**

Attendance is not mandatory in lectures.

Seminars and lab courses require regular attendance as part of the Studienleistung (pass/fail assessment) because it is essential for reaching the learning targets of these courses. Exercises may require regular attendance as well, in which case this fact will be stated in the description of the specific module.

While there are generally no admission requirements for examinations within a module, in the case of elective modules, it happens in very rare cases that two modules build directly on each other in terms of content and the corresponding advanced module can therefore only be completed if the introductory module has been successfully completed beforehand. This is indicated accordingly in the module descriptions.

Further information on the program (e.g. the examination regulations, the model study plan, entry requirements, etc.) can be found at

https://www.tf.uni-freiburg.de/en/study-programs/computer-science/m-sc-computer-science

| Subject                     | Informatik / Computer Science |
|-----------------------------|-------------------------------|
| Degree                      | Master of Science (M.Sc.)     |
| Scope of ECTS credit points | 120                           |
| Study duration              | 4 Semesters / 2 years         |

# B. Overview of Study program and teaching unit

| Study format                      | Full-time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Type of study program             | Consecutive and research oriented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Regular study duration            | 4 Semesters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| University                        | Albert-Ludwigs-Universität Freiburg / University of<br>Freiburg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Faculty                           | Faculty of Engineering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Department                        | Department of Computer Science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Homepage                          | https://www.tf.uni-freiburg.de/en/study-pro-<br>grams/computer-science                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Short profile                     | The Master of Science Informatik / Computer<br>Science program is versatile with a very flexible<br>curriculum.<br>Students acquire in-depth knowledge in various<br>self-chosen IT areas by participating in different<br>courses: Advanced and specialization lectures<br>(accompanied by exercises), seminars, a lab<br>course, a study project and the Master's thesis<br>form a personal competency profile in the field<br>of computer science. The Customized Course<br>Selection area allows a look outside the box by<br>taking some courses in subjects other than Com-<br>puter Science. In the last semester, students work<br>on their master's thesis. They are expected to<br>tackle an actual research question in close coope-<br>ration with a professor of the Department of Com-<br>puter Science as their supervisor, writing the The-<br>sis and presenting the results for the supervisors.<br>Students can opt to either choose their cour-<br>ses with a broad thematic orientation, combi-<br>ning various topics from all areas of Computer<br>Science, or specialize in either artificial intelli-<br>gence or cyber-physical systems, with the additio-<br>nal qualification "Specialization in Cyber-Physical<br>Systems" mentioned on the transcript. |
| Educational Goals / Qualification | The Master degree program in Computer Science<br>offers a study program based on the mathema-<br>tical and methodological foundations of compu-<br>ter science, which deepens methodological know-<br>ledge and strengthens application knowledge<br>in computer science, and verifies the student's<br>independent problem solving skills. Students can<br>choose between a broad thematic focus cover-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                   | ing various areas of computer science or a spe-<br>cialization in either Artificial Intelligence or Cyber-<br>Physical Systems. The degree program prepares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|                        | students for a career in academic research or in data-processing companies.                                                                                                                                                                                                                                |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Language(s)            | English (some elective courses in application areas in German)                                                                                                                                                                                                                                             |
| Admission requirements | <ul> <li>Bachelor's degree in computer science, math, or in a closely related field with 180 ECTS and a duration of at least 3 years or equivalent</li> <li>Average grade of 2.9 or better in German grading system</li> <li>English language proficiency level C1 or German C1 plus English B2</li> </ul> |
| Intake                 | can be started either in the winter semester or the summer semester                                                                                                                                                                                                                                        |
| Date/Version           | As of April 2025 / exam regulations 2020                                                                                                                                                                                                                                                                   |

# C. Profile of the degree program with qualification goals (technical and interdisciplinary)

The Master of Science degree program in Informatik / Computer Science is a two-year program open to highly qualified international and German graduate students with a Bachelor of Science degree in Computer Science or a similar subject. Building on the knowledge and skills from the basic course in the previous undergraduate Bachelor's degree, this graduate degree program conveys in-depth technical, methodological and subject related practical content. Students also acquire research skills and interdisciplinary skills.

The program has a total scope of 120 ECTS credits with a regular study duration of 4 semesters and can be started either in the winter semester or in the summer semester. With its flexible and versatile curriculum students acquire in-depth knowledge in various self-chosen IT areas by participating in different courses, structured in modules:

- **advanced and specialization lectures**, most of them accompanied by exercises (42 ECTS credits)
- **seminars** (6 ECTS credits)
- a lab course (6 ECTS credits)
- a study project (18 ECTS credits)

Completing these modules, students form a personal competency profile in the field of computer science. The **Customized Course Selection area** (18 ECTS credits) allows a look outside the box by taking some courses in subjects other than Computer Science (like mathematics, microsystems engineering, economical sciences, applied bioinformatics, sustainable systems, neuroscience, physics, medicine or cognitive science). In the last semester, students work on their **Master's thesis** (30 ECTS credits), tackling an actual research question in close cooperation with a supervising professor (of the Department of Computer Science) and their staff, writing the Thesis and presenting the results.

Students can opt to either choose their courses with a broad thematic orientation, combining various topics from all areas of Computer Science, or specialize in either the area of artificial intelligence or cyber-physical systems, with the additional qualification "Specialization Artificial Intelligence" resp. "Specialization Cyber-Physical Systems" mentioned on the final graduation documents and certificates.

The academic degree "Master of Science" (M.Sc.) awarded after successfully completing the study program forms the second professional qualification and enables students to pursue an academic career by applying for a PhD and working towards a doctorate; or they can enter a career in industry, research and development.

# C.1 Qualification goals of graduates of the program Master of Science Informatik / Computer Science

Computer science has become an integral part of our lives; it permeates all levels of everyday life, research areas and fields of work. So, as an expert in computer science possible occupational fields are divers and numerous. It depends on the distinct focus set during education in which area graduates will start out there career, and it is common that computer scientists change their focus more than once. Lifelong learning is a necessary concept in a subject as fast moving as computer science.

The Master of Science program in Informatik / Computer Science offers a study program based on the mathematical and methodological foundations of computer science that deepens methodological knowledge in computer science, and strengthens and verifies the student's independent problem solving skills. Students can choose between a broad thematic focus covering various areas of computer science or a specialization in either Artificial Intelligence or Cyber-Physical Systems. The degree program prepares students for a career in academic research or in data-processing companies.

Graduates specialized in AI are highly sought after, for example in work or research fields connected to autonomous driving, image recognition, medical- or biotechnology and neuroscience and many more innovative areas. For graduates choosing to refrain from specializing in favor of building a broader set of skills, some of these areas might be equally interesting, maybe from a slightly different point of view. They can also go into a completely different direction, for instance by working in the media industry or application development. Companies in the sustainable energy industry or transportation industry will benefit from the expertise in safety and security graduates specialized in Cyber-Physical Systems can provide, but so can research areas in biomedical technology.

Some common qualification goals exist for all graduates, no matter the individual specialization or focus during their studies. Those are mentioned next, sorted by technical qualifications and general or interdisciplinary qualifications.

#### C2. Technical qualification goals

Graduates from the Master of Science Informatik / Computer Science program

- have professional methodological competence in various fields of computer science (advanced proficiency in their chosen specialization area) and can transfer the concepts into practical
- know about and can apply the usual procedures in computer science from engineering approaches (such as analyzing and construction) to mathematical methods for gaining knowledge (such as formalizing and proving) to empirical methods (such as experimentation and simulation)
- a can grasp and structure complex problems and solve them using the usual methods of computer science
- are able to plan, carry out, document and present an IT task independently using scientific methods
- are proficient in using the usual IT tools, like programming, software development, system design, optimization procedures, testing etc.
- are aware of current requirements regarding safety and security aspects in computer science and can analyze potential threats and issues in new developments and applications
- are able to transfer their subject-related problem solving skills to other subjects and work with experts from that area to develop new applications and systems
- are aware of the social relevance of computer science and are able to grasp IT facts in various application and factual contexts; they can evaluate new concepts critically with regard to technical, societal and ethical aspects

# C3. General and interdisciplinary qualification goals

Graduates also

- have general, interdisciplinary problem-solving skills
- can assess themselves and their performance to the point, that they are capable of planning and implementing a wide variety of projects
- have the ability to work in a team and can take responsibility for themselves and others
- know the rules of good scientific practice and have the skills for problem-oriented scientific research as well as the ability to critically assess research results
- can document technical contexts and present information in a suitable written or oral form
- have analysis and decision-making skills in respect to technical, social and ethical aspects
- are able to continue learning independently in the field of computer science
- can adapt to new technologies and transfer their knowledge to future developments

D. Special features of the program (regarding stays abroad and internships)

While neither stays abroad nor internships are compulsory for the Master program in Informatik / Computer Science, students are welcome to participate in either one or both on a voluntary base. Students who would like to broaden their cultural horizons by spending a semester abroad will find information and support from various offices, such as the University's International Office and the Faculty's Erasmus coordinator for planning and coordination, and from the student advisor for useful adjustments to the individual personal study plan.

Students who want to gain practical experience through an internship will be supported in their project in an advisory capacity by the study coordinator and general advisor of the Faculty of Engineering.

# E. Module descriptions and model study plan

# E.1 Course structure

There is no predetermined curriculum for all the students in this Master program in Informatik / Computer Science. The exam regulations just provide the framework, which students fill with individually chosen lectures, seminars and other courses. As there are no mandatory courses, students in this versatile and individually adaptable program have to build and organize their own study plan following the regulations. They compose their individual portfolio of courses and determine the semester when to take them (observing the frequency of the offered courses as per the course catalog). Therefore, each student follows their own personalized study plan and course schedule.

The overall structure of the curriculum is shown in a diagram in the Curriculum section under

https://www.tf.uni-freiburg.de/en/study-programs/computer-science/m-sc-computer-science

Students can choose to either expand the range of the computer science expertise even more by one more lecture, or to complete all the available courses in this area in subjects other than computer science and so pursue interdisciplinary knowledge and skills on a slightly larger scale.

If so desired, students can choose to focus in one of the two **specialization areas**:

- Cyber-Physical Systems
- Artificial Intelligence

To specialize, students have to take the following courses from the respective areas:

- at least 4 Specialization courses or Advanced lectures (24 ECTS credit points)
- the Study project (18 ECTS credit points)
- the Thesis (30 ECTS credit points)

The affiliation of a course with one of the specialization areas is mentioned in the module description. An overview of the lectures and courses that are assigned to the respective area, from which the courses with at least 24 ECTS credits can be put together, is provided as an overview via PDF documents in the Curriculum section on the program website mentioned above.

On the program website, students can also find an overview with the list of subjects and the respective individual modules and courses offered in other departments that are generally open for students in the Master program of Informatik / Computer Science in the Customized Course Selection area (see section "Curriculum" (resp. Studieninhalt & -plan in German) just before the graph).

For detailed descriptions for all these modules and courses from the available subjects students are referred to the according module handbooks at the various departments, as it would go beyond the scope of the module handbook for Master Informatik / Computer Science to include them all.

A language course can replace one of the courses in other subjects; especially international students are encouraged to use this possibility to develop some language proficiency in German.

The contributions of the individual modules to the Master program structure are stated in the Epilog.

# E.2 Example for study plan

Since all of the modules in this study program are compulsory elective modules with a large selection of courses to select from, or individual work without a fixed reference to the lecture period, presenting a study schedule is only useful to a limited extent, as the specific plan is different for each student.

An exemplary study plan/curriculum for M.Sc. Informatik / Computer Science in the Curriculum section of the program website offers more detailed information about the program structure (sorted by modules with mentions of the semesters the courses could be taken in).

# F. Teaching and Learning Methods

**Lectures** and related exercises make up the majority of the different courses in the Master program. Lectures convey fundamental and advanced subject-relevant knowledge on specific topics as well as methodological knowledge in a coherent manner. Lectures are an integral part of teaching in technical subjects, as they summarize facts, structures and interdependencies of a subject area and convey general knowledge. In accompanying **exercises**, the acquired technical and methodological knowledge as well as scientific working techniques are applied and practiced independently. Usually, exercises are held as follows: in a first part, students work on subject-specific questions methodically and independently. In a second part, the work results are discussed under the guidance of a tutor. The students improve their problem-solving skills through qualified feedback on their own performance and discovering common sources of error.

A **seminar** as a type of course introduces and develops the ability to independent scientific work - alone and in groups - and intensive discussion in regards to a given topic. In seminars, content on a specific subject area is not prepared and presented by the lecturers alone; instead, the students work through provided literature largely independently and present the acquired knowledge to their fellow students. Following the presentations, there is generally a discussion between the supervising lecturer and the participating students, which offers room for reflection and constructive criticism. In addition, a written version of the results in the form of a scientific

poster or a term paper, is often expected as part of the coursework. The interdisciplinary skills usually learned in seminars - e.g. B. analyzing, reflecting, discussing and presenting – are achieved in a group is a supervised setting. Therefore, a group-related compulsory attendance is required in these events.

**Lab courses** and **practical exercises** provide subject-related practical and methodical skills. Students are required to work largely independently and often in a special setting, e.g. in appropriately equipped laboratories or (possibly in small groups) with special tool kits provided. Accordingly, compulsory attendance can be required here. In most cases, the performance for lab courses is assessed through written reports, exercise sheets, supervised experiments and / or a presentation.

In **projects**, students learn to critically analyze complex problems in groups or alone and to work out solutions. In line this work, theoretical knowledge and methodological skills are applied in practical settings. A self-chosen or specified task from a real-life situation is tackled alone or in a team. Problem-solving skills relevant to the specific topic of the task are developed and professional qualifications like communication, team work and self-management skills are deepened. Projects are usually evaluated on the basis of a written draft, a demonstrator and / or a presentation.

The university library (especially with the faculty's own branch) provides literature necessary for self-study that supplements the lectures and for background research required for project work.

G. Explanation of the examination system

Evaluation of the successful achievement of the qualification goals is done during the study program at the end of the module in each semester. Most modules in this program (11 out of 13 in total) are completed with a graded assessment ("Prüfungsleistung"); details depend on the chosen courses. Courses can include additional coursework, depending on the qualification goals. Details are given in the examination regulations and in the individual module descriptions. Lecturer provide further specifications at the beginning of the respective course.

Courses from subjects outside of computer science, that are taken in the Customized Course Selection, are completed with pass/fail assessments. For these courses, the regulations and deadlines of the respective offering faculty/department apply. The list of available subjects and courses can be found in the module handbook and on the program website. The organization of these courses regarding booking and registration procedures in the Campus Management System (HISinOne) is subject to constant further development, and it requires students to actively inform themselves. For questions the program coordinator or the study advisor can be contacted.

The Master program is completed by writing a Master thesis and presenting it during the Master colloquium. With the thesis students show, that they are able to work on a computer science topic independently within a given period of time using scientific methods and to present the results appropriately. If the specialization Artificial Intelligence or Cyber-Physical Systems is chosen, the topic of the master thesis must be chosen from within that specialization area.

# G.1 Graded assessments / Exams ("Prüfungsleistungen")

Usually, modules are completed with a graded examination. The type and scope of the examinations are specified in the subject-specific examination regulations as well as in the module handbook and are also announced to the students at the beginning of the respective course.

Written course-based graded assessments include supervised written examinations (Klausuren) and written term papers or essays. Graded assessments can also be administered orally, in the form of oral examinations (exam interviews) and presentations. Practical examinations include conducting experiments and creating and demonstrating software or demonstrators. Examinations (as well as pass/fail assessments) can also be taken as online exams, in accordance with the current examination regulations and framework regulations of the University of Freiburg.

The duration of written exams lies between a minimum of 60 and a maximum of 240 minutes. Students will be notified about the dates for exams and information about permitted aids in a suitable manner in good time. The duration of an oral examination (which can be carried out as an individual or as a group examination) is at least 10 and a maximum of 30 minutes (per examinee); if the oral exam is a final module exam, the maximum duration per examinee is 45 minutes. Presentations usually have a duration of 10-20 minutes (depending on the topic and purpose; details are announced by the lecturers in the respective course. The scope (number of pages) of homework/papers varies depending on the topic and format and is therefore specified by the lecturer in the course.

Timely registration for exams via the HISinOne administration system is required for course-related examinations. The exact dates and information about the procedure can be found on the homepage of the examination office of the Faculty of Engineering (<u>https://www.tf.uni-freiburg.de/en/studies-and-teaching/a-to-z-study-</u> <u>faq/examinations</u>). It is important to note that for elective modules and courses from other subjects, the regulations of the respective offering faculty/department apply!

Unless otherwise specified in the examination regulations or in the module descriptions, the grade for the module is calculated purely from the stated graded assessment. The overall grade is calculated as the arithmetic average of the module grades weighted by ECTS points. More details are given in the examination regulations.

# G.2 Pass/fail assessments / Coursework ("Studienleistungen")

Pass/fail assessments or coursework are individual written, oral or practical achievements that are provided by students in connection with courses, but which only have to be passed. These assessments can be repeated as often as necessary until they are passed. They can be graded, but do not have to be, and are not included in the respective final grade (i.e. the final grade of the module as well as the final grade of the course). The scope and type of them are specified in the module descriptions and are announced to the students at the beginning of the respective course.

Coursework may consist, for example, of

- regular attendance in a course
- written tests or examinations (i.e. written supervisory work, possibly also online, or as an open-book exam)
- Written elaborations such as reports, case studies, wikis, websites or posters
- oral tests or exams
- the completion of exercises or worksheets
- presentations
- doing experiments
- the creation and presentation of software or demonstrators

Examination prerequisites (i.e. admission requirements for examinations within a module) do not exist in the Master of Science Computer Science / Informatik program, as these could have the adverse effect of extending the study duration considerably. If a module requires the completion of coursework as well as graded examination, these can, if necessary, be completed independently of each other. This means that completion of the

coursework is not a mandatory requirement for participation in the graded examination, although in most cases it makes more sense from a didactic point of view to complete the coursework before the taking the exam.

Since for the calculation of the final grade all relevant module grades (i.e. from modules completed by a graded assessment) are weighted by ECTS credits, this is not specifically mentioned in each individual module description. Please refer to the examination regulations.

| Name of module         | Number of module               |
|------------------------|--------------------------------|
| Master module          | 11LE13MO-8000-<br>MSc-679-2020 |
| Responsible            |                                |
| Prof. Dr. Hannah Bast  |                                |
| Faculty                |                                |
| Faculty of Engineering |                                |

| ECTS-Points               | 30.0                  |
|---------------------------|-----------------------|
| Workload                  | 900 Stunden   hours   |
| Hours of week             |                       |
| Recommended semester      | 4                     |
| Duration                  | 1 semester / 6 months |
| Compulsory/Elective (C/E) | Compulsory            |
| Frequency                 | each term             |

#### Compulsory requirement

Erfolgreicher Abschluss von Modulen mit einem Umfang von mindestens 72 ECTS-Punkten und erfolgreiches Absolvieren des Moduls Studienprojekt im Rahmen des Studiengangs Master of Science im Fach Informatik/Computer Science.

Successful completion of modules with a scope of at least 72 ECTS credits and successful completion of the study project module as part of the Master of Science degree in computer science.

Recommended requirement

Vertiefte Kenntnisse in mathematischen Grundlagen, in praktischen und theoretischen Informatikbereichen und insbesondere im Themenbereich, in dem die Arbeit erstellt wird

In-depth knowledge of mathematical fundamentals, in practical and theoretical IT areas and especially in the subject area in which the thesis will be written

| Assigned Courses |      |     |      |     |          |
|------------------|------|-----|------|-----|----------|
| Name             | Туре | C/E | ECTS | HoW | Workload |

#### Contents

The topic of the master thesis is given by a professor from the Department of Computer Science in consultation with the student. The topic may originate outside of the Faculty of Engineering, as long as one of the professors at the Department of Computer Science agrees to the assessment and evaluation of the work as the official supervisor. The student is assigned a supervisor with a university-level qualification. The technical content is task-specific and is predominantly acquired in self-study through independent research.

If the specialization Artificial Intelligence or Cyber-Physical Systems is chosen, the topic of the master thesis must be chosen from within the relevant specialization.

#### Qualification

In the master thesis, the students work independently on a computer science topic. For the given questions, they carry out background research in literature for scientific sources. The students select suitable scientific procedures and methods and apply them on their topic, adapt them or develop them. The results obtained are critically compared with the current state of research and evaluated. The students present their results clearly and in an academically appropriate form in their written thesis, as well in its presentation during the colloquium. They are able to discuss their work on a suitable academic level.

#### Examination achievement

Written Master thesis in German or English, must be completed within six months

The master thesis is supplemented by an approximately 60-minute master colloquium, which may be held in German or English at the student's choice. The master colloquium is usually led and evaluated by the supervisor of the master thesis and consists of an approximately 20-minute presentation by the student on the results of the master thesis and a subsequent discussion. Admission to the master colloquium is granted only if the master thesis has been submitted. The master colloquium counts for 3 ECTS points and is usually open to the university public.

#### Course achievement

Active participation (attendance can be required) in meetings with the supervisor, self-organizing the given tasks, doing background research

#### Literature

Abhängig vom Thema | Depending on topic

Usability

Compulsory Module for students of the study pogram M.Sc. in Informatik / Computer Science (PO 2020)

| Name of node           | Number of node             |
|------------------------|----------------------------|
| Advanced Lectures      | 11LE13KT-Weiterf Vorlesung |
| Faculty                |                            |
| Faculty of Engineering |                            |

| Compulsory/Elective (C/E) | Compulsory |
|---------------------------|------------|
| ECTS-Points               | 12.0       |

# Comment

Students have to take at least 1 Advanced Lecture and are allowed at most 2 Advanced Lectures (depending on number of Specialization Courses - together it must be 7 courses).

Please note:

If you choose to take an additional Computer Science lecture in the Customized Course Selection, that one will be counted as an 8th lecture, overall.

| Name of module                                            | Number of module      |
|-----------------------------------------------------------|-----------------------|
| Algorithms Theory                                         | 11LE13MO-2010_PO 2020 |
| Responsible                                               |                       |
| Prof. Dr. Hannah Bast<br>Prof. Dr. Fabian Kuhn            |                       |
| Organizer                                                 |                       |
| Department of Computer Science, Algorithms and Complexity |                       |
| Faculty                                                   |                       |
| Faculty of Engineering                                    |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement                                                                                    |
|-----------------------------------------------------------------------------------------------------------|
| keine   none                                                                                              |
| Recommended requirement                                                                                   |
| Basic algorithms and data structures knowledge, comparable to what is done in Algorithms and Datastructu- |

 

 res, is assumed.

 Assigned Courses

 Name
 Type
 C/E
 ECTS
 HoW
 Workload

 Algorithms Theory
 lecture course
 Core elective
 6.0
 3.0
 180 Stunden |

| Algorithms Theory             | lecture course   | Core elec-<br>tive | 6.0 | 3.0 | 180 Stun-<br>den  <br>hours |
|-------------------------------|------------------|--------------------|-----|-----|-----------------------------|
| Algorithms Theory - Exercises | excercise course | Core elec-<br>tive |     | 1.0 |                             |

#### Qualification

The design and analysis of algorithms is fundamental to computer science. Students know important algorithmic techniques, are able to apply them and, if necessary, adapt them for new situations. Students have mastered the basic principles of algorithm design and are able to use complex data structures to implement algorithms. They can assess the power of algorithmic design principles, such as randomization and dynamic programming, and are able to apply sophisticated approaches for the analysis of methods designed according to such principles.

Examination achievement

Written exam (usually 90 to 180 minutes)

Course achievement

Exercise sheets have to be completed and handed in on a regular basis. These will be scored and awarded with points.

To successfully complete the course work (Studienleistung), you need to have 50% of all exercise points.

Recommendation

Exercises should be done in groups of 2 students. Please team up with a colleague and send an email (including name and matriculation number of both students) to the lecturer.

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Weiterführende Vorlesung | Advanced Lectures
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Essential Lectures in Computer Science

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                                                                                              | Number of module      |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Algorithms Theory                                                                                                           | 11LE13MO-2010_PO 2020 |
| course                                                                                                                      |                       |
| Algorithms Theory                                                                                                           |                       |
| Event type                                                                                                                  | Number                |
| lecture course                                                                                                              | 11LE13V-2010          |
| Organizer                                                                                                                   |                       |
| Department of Computer Science, Algorithms and Data Structures<br>Department of Computer Science, Algorithms and Complexity |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 47 Stunden   hours           |
| Independent study         | 118 Stunden   hours          |
| Hours of week             | 3.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

This course teaches fundamental algorithms and data structures, and a variety of fundamental techniques for their design and analysis. The focus is on material not already covered in the basic undergraduate course on algorithms and data structures, or on the enhancement of that material. Example techniques are: divide and conquer, randomization, amortized analysis, greedy algorithms, dynamic programming. Example algorithms and data structures are: fast Fourier transformation, randomized quicksort, Fibonacci heaps, minimum spanning trees, longest common subsequence, network flows.

The design and analysis of algorithms is fundamental to computer science. In this course, we will study efficient algorithms for a variety of basic problems and, more generally, investigate advanced design and analysis techniques. Central topics are algorithms and data structures that go beyond what has been considered in the undergraduate course Informatik II. Basic algorithms and data structures knowledge, comparable to what is done in Informatik II, or , is therefore assumed. The topics of the course include (but are not limited to):

- Divide and conquer: geometrical divide and conquer, fast fourier transformation
- Randomization: median, randomized quicksort, probabilistic primality testing, etc.
- Amortized analysis: binomial queues, Fibonacci heaps, union-find data structures
- Greedy algorithms: minimum spanning trees, bin packing problem, scheduling
- Dynamic programming: matrix chain product problem, edit distance, longest common subsequence problem
- Graph algorithms: network flows, combinatorial optimization problems on graphs

Examination achievement

Siehe Modulebene | See module level

| Course achievement                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Siehe Modulebene  <br>See module level                                                                                                                                                                                                                                                                                       |
| Literature                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Jon Kleinberg and Éva Tardos: Algorithm Design, Addison Wesley</li> <li>Thomas H. Cormen, Charles E. Leiserson, Robert L. Rivest, and Cliford Stein: Introduction to Algorithms,<br/>MIT Press</li> <li>Thomas Ottmann and Peter Widmayer: Algorithmen und Datenstrukturen, Spektrum Akademischer Verlag</li> </ul> |
| Compulsory requirement                                                                                                                                                                                                                                                                                                       |
| keine   none                                                                                                                                                                                                                                                                                                                 |
| Recommended requirement                                                                                                                                                                                                                                                                                                      |
| Grundkenntnisse in Algorithmen und Datenstrukturen  <br>Basic algorithms and data structures knowledge                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                              |

| Name of module                                                                                                              | Number of module      |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Algorithms Theory                                                                                                           | 11LE13MO-2010_PO 2020 |
| course                                                                                                                      |                       |
| Algorithms Theory - Exercises                                                                                               |                       |
| Event type                                                                                                                  | Number                |
| excercise course                                                                                                            | 11LE13Ü-2010          |
| Organizer                                                                                                                   |                       |
| Department of Computer Science, Algorithms and Data Structures<br>Department of Computer Science, Algorithms and Complexity |                       |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 15 Stunden   hours           |
| Hours of week             | 1.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

| Contents                                                                          |                                 |
|-----------------------------------------------------------------------------------|---------------------------------|
|                                                                                   |                                 |
| Examination achievement                                                           |                                 |
| Siehe Modulebene  <br>See module level                                            |                                 |
| Course achievement                                                                |                                 |
| Siehe Modulebene  <br>See module level                                            |                                 |
| Compulsory requirement                                                            |                                 |
|                                                                                   |                                 |
| Recommendation                                                                    |                                 |
| We might be able to offer German exercise tutorials (there will definitely be End | alieb tutoriale). In caso you'd |

We might be able to offer German exercise tutorials (there will definitely be English tutorials). In case you'd prefer to have the exercise tutorials in German, please indicate this via email to the lecturer.

 $\uparrow$ 

| Name of module                                                                                                                      | Number of module      |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Datenbanken und Informationssysteme / Data Bases and Information<br>Systems                                                         | 11LE13MO-2060_PO 2020 |
| Responsible                                                                                                                         |                       |
| Prof. Dr. Hannah Bast<br>Prof. Dr. Joschka Bödecker                                                                                 |                       |
| Organizer                                                                                                                           |                       |
| Department of Computer Science, Algorithms and Data Structures<br>Department of Computer Science, Databases and Information Systems |                       |
| Faculty                                                                                                                             |                       |
| Faculty of Engineering                                                                                                              |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement                                                                                |
|-------------------------------------------------------------------------------------------------------|
| keine   none                                                                                          |
| Recommended requirement                                                                               |
| Grundkenntnisse in praktischer Informatik, zu Algorithmen und Datenstrukturen sowie grundlegende Pro- |

Grundkenntnisse in praktischer Informatik, zu Algorithmen und Datenstrukturen sowie grundlegende Programmierkenntnisse;

Grundkenntnisse über Betriebssysteme und deren Einsatz, über Netzwerk und Protokolle

Basic knowledge of practical computer science, algorithms and data structures as well as basic programming skills;

Basic knowledge of operating systems and their use, fundamental knowledge about networks and protocols

| Assigned Courses                                                                           |                  |                 |      |     |                             |
|--------------------------------------------------------------------------------------------|------------------|-----------------|------|-----|-----------------------------|
| Name                                                                                       | Туре             | C/E             | ECTS | HoW | Workload                    |
| Datenbanken und Informationssysteme /<br>Data Bases and Information Systems - Lec-<br>ture | lecture course   | Compul-<br>sory | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Datenbanken und Informationssysteme /<br>Data Bases and Information Systems -<br>Exercises | excercise course | Compul-<br>sory |      | 2.0 |                             |

#### Qualification

Students understand the basic concepts of databases. They are able to think on different levels of abstraction and have methodical skills in designing a database. They know essential concepts of the SQL standard. Students gained practical experience in using a declarative, set-oriented language for databases. They are able to estimate the processing effort of a request and are able to deal with access rights.

Examination achievement

Written exam (usually 90 to 180 minutes)

#### Course achievement

The exercise sheets will be assessed. To pass the course, at least 50% of the points you can get by working on the exercise sheets must be achieved.

Recommendation

The exercises deepen the subject matter dealt with in the lecture in theory and practice. The exercise sheets also contain tasks to be solved on the computer. Familiarization with the required software is required for this.

While the course is usually offered in German, there are English recordings available; at least one exercise group will be held in English. You are allowed to do the coursework and the written exam in English.

#### Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (PO 2020) in Weiterführende Vorlesung | Advanced Lectures
- M.Sc. Embedded Systems Engineering (ESE) (PO 2021) in Essential Lectures in Computer Science

Pflichtmodul für Studierende des Studiengangs

- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)

| Name of module                                                                                                                      | Number of module      |  |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| Datenbanken und Informationssysteme / Data Bases and Information<br>Systems                                                         | 11LE13MO-2060_PO 2020 |  |
| course                                                                                                                              |                       |  |
| Datenbanken und Informationssysteme / Data Bases and Information Systems - Lecture                                                  |                       |  |
| Event type                                                                                                                          | Number                |  |
| lecture course                                                                                                                      | 11LE13V-2060          |  |
| Organizer                                                                                                                           |                       |  |
| Department of Computer Science, Algorithms and Data Structures<br>Department of Computer Science, Databases and Information Systems |                       |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 32 Stunden   hours           |
| Independent study         | 118 Stunden   hours          |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Compulsory                   |
| Languages                 | german, english              |

# Contents

Aufgabe von Datenbanken ist die Verwaltung großer, dauerhafter Datenbestände in der Weise, dass eine Menge von Benutzern diese Daten unabhängig voneinander, effizient, bequem und sicher verarbeiten können.

Der Stoff der Vorlesung wird in Übungen und einem parallel laufenden Praktikum anhand verschiedener Datenbanksysteme konkretisiert.

Es werden im einzelnen die folgenden Aspekte behandelt:

- Einführung in Datenbanken
- Datenbankentwurf und Datenmodelle
- Datenmanipulationssprachen
- Entwurfstheorie
- Datenintegrität
- Transaktionsverwaltung
- Physische Datenorganisation und aktuelle Entwicklungen.

L

The function of databases is to manage large, permanent data sets in such a way that a large number of users can process this data independently, efficiently, comfortably and securely.

The material of the lecture is concretized in theoretiscal and practical exercises using various database systems.

The following aspects are dealt with in detail:

- Introduction to databases
- Database design and data models
- Data manipulation languages
- Design theory
- Data integrity

- Transaction management
- Physical data organization and current developments.

#### Examination achievement

Siehe Modulebene | See module level

#### Course achievement

Siehe Modulebene | See module level

#### Literature

- G. Lausen: Datenbanken Grundlagen und XML-Technologien, Elsevier Spektrum Akademischer Verlag, 2005.
- A. Heuer, G. Saake: Datenbanken Konzepte und Sprachen, International Thomson Publishing, 2. Auflage, 2000.
- A. Kemper, A. Eickler: Datenbanksysteme Eine Einführung, Oldenbourg, 4. Auflage, 2001.
- G. Vossen: Datenmodelle, Datenbanksprachen und Datenbank-Management-Systeme, Oldenbourg, 4. Auflage, 2000.

Compulsory requirement

keine | none

Recommended requirement

Grundkenntnisse in praktischer Informatik, zu Algorithmen und Datenstrukturen sowie grundlegende Programmierkenntnisse;

Grundkenntnisse über Betriebssysteme und deren Einsatz, über Netzwerk und Protokolle

Basic knowledge of practical computer science, algorithms and data structures as well as basic programming skills;

Basic knowledge of operating systems and their use, fundamental knowledge about networks and protocols

| Name of module                                                                       | Number of module      |  |
|--------------------------------------------------------------------------------------|-----------------------|--|
| Datenbanken und Informationssysteme / Data Bases and Information<br>Systems          | 11LE13MO-2060_PO 2020 |  |
| course                                                                               |                       |  |
| Datenbanken und Informationssysteme / Data Bases and Information Systems - Exercises |                       |  |
| Event type                                                                           | Number                |  |
| excercise course                                                                     | 11LE13Ü-2060          |  |
| Organizer                                                                            |                       |  |
| Department of Computer Science, Databases and Information Systems                    |                       |  |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 30 Stunden   hours           |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Compulsory                   |
| Languages                 | german, english              |

#### Contents

Die Übungen vertiefen den in der Vorlesung behandelten Stoff in Theorie und Praxis. Die Übungsblätter enthalten auch am Computer zu lösende Aufgaben. Hierzu ist ein Vertrautmachen mit der benötigten Software erforderlich.

The exercises deepen the subject matter dealt with in the lecture in theory and practice. The exercise sheets also contain practical tasks to be solved on the computer. Familiarization with the required software is required for this.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

#### Compulsory requirement

| Name of module                                                                                                                                                                                                                                                                                    | Number of module      |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| Foundations of Artificial Intelligence                                                                                                                                                                                                                                                            | 11LE13MO-2040_PO 2020 |  |
| Responsible                                                                                                                                                                                                                                                                                       |                       |  |
| Prof. Dr. Joschka Bödecker<br>Prof. Dr. Frank Roman Hutter                                                                                                                                                                                                                                        |                       |  |
| Organizer                                                                                                                                                                                                                                                                                         |                       |  |
| Department of Computer Science, Computer Science, Foundations of Artificial Intelligence<br>Department of Computer Science, Autonomous Intelligent Systems<br>Department of Computer Science, Professorship in Neurorobotics<br>Department of Computer Science, Professorship in Machine Learning |                       |  |
| Faculty                                                                                                                                                                                                                                                                                           |                       |  |
| Faculty of Engineering                                                                                                                                                                                                                                                                            |                       |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

| Compulsory requirement                                                                      |
|---------------------------------------------------------------------------------------------|
| keine   none                                                                                |
| Recommended requirement                                                                     |
| keine   none<br>Grundlagenkenntnisse in mathematischer Logik können hilfreich sein<br> <br> |

asic knowledge about formal logic can be helpful

| Assigned Courses                                        |                  |                    |      |     |                             |
|---------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                    | Туре             | C/E                | ECTS | HoW | Workload                    |
| Foundations of Artificial Intelligence - Lec-<br>ture   | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 Stun-<br>den  <br>hours |
| Foundations of Artificial Intelligence - Exer-<br>cises | excercise course | Core elec-<br>tive |      | 1.0 |                             |

#### Qualification

Students have basic knowledge of the various techniques of artificial intelligence. They understand the basic principles of artificial intelligence and apply the technical terms in the correct context. Students are able to interpret tasks in the area of problem solving and searching, and can apply the learned algorithms to new situations. Students know the usual types of knowledge representation and are able to analyze the techniques presented and evaluate their use in new situations.

Examination achievement

Written exam (usually 90 to 180 minutes)

Course achievement

none

Recommendation

Working on the exercise sheets is voluntary, but strongly recommended. The exam will contain similar tasks.

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Weiterführende Vorlesung | Advanced Lectures
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Essential Lectures in Computer Science

Part of the specialization Artificial Intelligence in Master of Science Informatik/Computer Science bzw. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                                                                                                                                                                                                                                                                    | Number of module      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Foundations of Artificial Intelligence                                                                                                                                                                                                                                                            | 11LE13MO-2040_PO 2020 |
| course                                                                                                                                                                                                                                                                                            |                       |
| Foundations of Artificial Intelligence - Lecture                                                                                                                                                                                                                                                  |                       |
| Event type                                                                                                                                                                                                                                                                                        | Number                |
| lecture course                                                                                                                                                                                                                                                                                    | 11LE13V-2040          |
| Organizer                                                                                                                                                                                                                                                                                         |                       |
| Department of Computer Science, Computer Science, Foundations of Artificial Intelligence<br>Department of Computer Science, Autonomous Intelligent Systems<br>Department of Computer Science, Professorship in Neurorobotics<br>Department of Computer Science, Professorship in Machine Learning |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 41 Stunden   hours           |
| Independent study         | 126 Stunden   hours          |
| Hours of week             | 3.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

This course will introduce the basic concepts and techniques used within the field of Artificial Intelligence. The following topics will be covered:

- Introduction to Artificial Intelligence, including a short history of Artificial Intelligence
- agents
- problem solving and search
- logic and knowledge representation
- action planning
- representation of and reasoning with uncertainty
- machine learning

# Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

Literature

Artificial Intelligence: A modern approach, Stuart Russel and Peter Norvig, Prentice Hall, 2009

Compulsory requirement

keine | none

#### Recommended requirement

#### keine | none

Grundlagenkenntnisse in mathematischer Logik können hilfreich sein | Basic knowledge about formal logic can be helpful

| Name of module                                                                                                                                                                                                                                                                                    | Number of module      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Foundations of Artificial Intelligence                                                                                                                                                                                                                                                            | 11LE13MO-2040_PO 2020 |
| course                                                                                                                                                                                                                                                                                            | •<br>•                |
| Foundations of Artificial Intelligence - Exercises                                                                                                                                                                                                                                                |                       |
| Event type                                                                                                                                                                                                                                                                                        | Number                |
| excercise course                                                                                                                                                                                                                                                                                  | 11LE13Ü-2040          |
| Organizer                                                                                                                                                                                                                                                                                         |                       |
| Department of Computer Science, Computer Science, Foundations of Artificial Intelligence<br>Department of Computer Science, Autonomous Intelligent Systems<br>Department of Computer Science, Professorship in Neurorobotics<br>Department of Computer Science, Professorship in Machine Learning |                       |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 13 Stunden   hours           |
| Hours of week             | 1.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

#### Contents

The exercises are intended to give students a better understanding of the most important techniques they learn during lectures by applying the principles and formal methods to real life tasks.

Examination achievement

Siehe Modulebene | See module level

#### Course achievement

Siehe Modulebene | See module level

#### Compulsory requirement

 $\overline{\uparrow}$ 

| Name of module                                                                                                                | Number of module      |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| Image Processing and Computer Graphics                                                                                        | 11LE13MO-2050_PO 2020 |  |
| Responsible                                                                                                                   |                       |  |
| Prof. Dr. Thomas Brox<br>Prof. DrIng. Matthias Teschner                                                                       |                       |  |
| Organizer                                                                                                                     |                       |  |
| Department of Computer Science, Computer Graphics<br>Department of Computer Science, Pattern Recognition and Image Processing |                       |  |
| Faculty                                                                                                                       |                       |  |
| Faculty of Engineering                                                                                                        |                       |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

| Compulsory requirement                                             |  |
|--------------------------------------------------------------------|--|
| keine   none                                                       |  |
| Recommended requirement                                            |  |
| Fundamental mathematical knowledge and programming skills in C/C++ |  |

| Assigned Courses                                    |                  |                    |      |     |                             |
|-----------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                | Туре             | C/E                | ECTS | HoW | Workload                    |
| Image Processing and Computer Graphics<br>- Lecture | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 Stun-<br>den  <br>hours |
| Image Processing and Computer Graphics - Exercise   | excercise course | Core elec-<br>tive |      | 1.0 |                             |

| Qualification |
|---------------|
|---------------|

Students have basic knowledge of the tasks and procedures in image processing and computer graphics. They are able to classify typical image processing problems and questions of generative computer graphics and to understand the main features of current related literature.

Examination achievement

Written exam (usually 90 to 180 minutes)

Course achievement

none

| Recommendation                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Participation in exercises is recommended to be prepared for the exam.                                                                                                                                                                                  |
| Usability                                                                                                                                                                                                                                               |
| Compulsory elective module for students of the study program<br>M.Sc. Informatik / Computer Science (2020) in Weiterführende Vorlesung   Advanced Lectures<br>M.Sc. Embedded Systems Engineering (ESE) (2021) in Essential Lectures in Computer Science |
| Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering                                                                                                         |
| Wahlpflichtmodul für Studiorondo des Studiongangs                                                                                                                                                                                                       |

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                                                                                                | Number of module      |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Image Processing and Computer Graphics                                                                                        | 11LE13MO-2050_PO 2020 |
| course                                                                                                                        |                       |
| Image Processing and Computer Graphics - Lecture                                                                              |                       |
| Event type                                                                                                                    | Number                |
| lecture course                                                                                                                | 11LE13V-2050          |
| Organizer                                                                                                                     |                       |
| Department of Computer Science, Computer Graphics<br>Department of Computer Science, Pattern Recognition and Image Processing |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 41 Stunden   hours           |
| Independent study         | 126 Stunden   hours          |
| Hours of week             | 3.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

#### Contents

The lecture provides an introduction of basic approaches and illustrates the state-of-the-art in image processing and computer graphics. The curriculum covers image generation, point operations on images, linear and non-linear filters, image segmentation, optical flow and techniques such as calculus of variations and energy minimization. In the context of computer graphics, rasterization-based image generation, i.e. the rendering pipeline of modern graphics cards, is covered. Here, homogeneous coordinates, transforms, color spaces, rasterization, visibility, local illumination models and textures are addressed.

#### Examination achievement

Siehe Modulebene |

See module level

#### Course achievement

Siehe Modulebene | See module level

#### Literature

Will be announced in each lesson.

#### Compulsory requirement

keine | none

Recommended requirement

Fundamental mathematical knowledge and programming skills in C/C++

| Name of module                                                                                                                | Number of module      |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Image Processing and Computer Graphics                                                                                        | 11LE13MO-2050_PO 2020 |
| course                                                                                                                        |                       |
| Image Processing and Computer Graphics - Exercise                                                                             |                       |
| Event type                                                                                                                    | Number                |
| excercise course                                                                                                              | 11LE13Ü-2050          |
| Organizer                                                                                                                     |                       |
| Department of Computer Science, Computer Graphics<br>Department of Computer Science, Pattern Recognition and Image Processing |                       |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 13 Stunden   hours           |
| Hours of week             | 1.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

#### Contents

The exercises are intended to give students a better understanding of the most important techniques they learn during lectures. They are expected to implement some selected methods in C/C++ and develop an intuition of their usage.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

#### Compulsory requirement

| Name of module                                                                                                                      | Number of module      |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Machine Learning                                                                                                                    | 11LE13MO-1153_PO 2020 |
| Responsible                                                                                                                         |                       |
| Prof. Dr. Joschka Bödecker<br>Prof. Dr. Frank Roman Hutter                                                                          |                       |
| Organizer                                                                                                                           |                       |
| Department of Computer Science, Professorship in Neurorobotics<br>Department of Computer Science, Professorship in Machine Learning |                       |
| Faculty                                                                                                                             |                       |
| Faculty of Engineering                                                                                                              |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement                                                                      |
|---------------------------------------------------------------------------------------------|
| keine   none                                                                                |
| Recommended requirement                                                                     |
| Knowledge in Grundlagen der Künstlichen Intelligenz / Foundations of Artifical Intelligence |

| Assigned Courses                                      |                  |                    |      |     |                             |  |
|-------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|--|
| Name                                                  | Туре             | C/E                | ECTS | HoW | Workload                    |  |
| Maschinelles Lernen / Machine Learning -<br>Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 Stun-<br>den  <br>hours |  |
| Maschinelles Lernen / Machine Learning -<br>Exercises | excercise course | Core elec-<br>tive |      | 1.0 |                             |  |

#### Qualification

This course provides you with a good theoretical understanding and practical experience about the basic concepts of machine learning. You shall be enabled to implement a number of basic algorithms, understand advantages and drawbacks of single methods and know typical application domains thereof. Furthermore, you should be able to use (Python) software libraries in order to work on novel data analysis problems.

The course will prepare you to dive deeper into advanced methods of ML, e.g. deep learning, recurrent networks, reinforcement learning, hyperparameter optimization, and into specific application domains such as image analysis, brain signal analysis, robot learning, bioinformatics etc., for which specialized courses are available.

| Examination achieved | /ement |
|----------------------|--------|
|----------------------|--------|

written or oral examination

#### Course achievement

To prepare for the exam, there can be a mock exam (written or oral).

#### Examination weight

- Bachelor of Science in Embedded Systems Engineering, Academic regulations of 2009: The grade of the module is triple-weighted according to the number of its ECTS-points in the calculation of the overall grade.
- Bachelor of Science in Embedded Systems Engineering, Academic regulations of 2011: The grade of the module is triple-weighted according to the number of its ECTS-points in the calculation of the overall grade.
- Master of Science in Embedded Systems Engineering, Academic regulations of 2012: The grade of the module is single-weighted according to the number of its ECTS-points in the calculation of the overall grade.
- Master of Science in Informatik, Academic regulations of 2005: The grade of the module is single-weighted according to the number of its ECTS-points in the calculation of the overall grade.
- Master of Science in Informatik, Academic regulations of 2011: The grade of the module is single-weighted according to the number of its ECTS-points in the calculation of the overall grade.

#### Usability

Elective Module for students of the study program

- Bachelor of Science in Embedded Systems Engineering
- Bachelor of Science in Informatik
- Lehramt an Gymnasien in Informatik, major subject
- Lehramt an Gymnasien in Informatik, additional major subject
- Lehramt an Gymnasien in Informatik, major subject in combination with Visual Arts or Music
- Master of Science in Embedded Systems Engineering
  - Robotics and Computer Vision
  - Verteilte Systeme
  - Personal Profile
- Master of Science in Informatik
  - Graphische und Bildverarbeitende Systeme
  - Künstliche Ingelligenz und Robotic
  - Kognitive technische Systeme
  - Information Systems
| Name of module                                                    | Number of module |  |
|-------------------------------------------------------------------|------------------|--|
| Machine Learning 11LE13MO-1153_                                   |                  |  |
| course                                                            |                  |  |
| Maschinelles Lernen / Machine Learning - Lecture                  |                  |  |
| Event type                                                        | Number           |  |
| lecture course                                                    | 11LE13V-1153     |  |
| Organizer                                                         |                  |  |
| Department of Computer Science, Professorship in Machine Learning |                  |  |

**ECTS-Points** 6.0 Workload 180 Stunden | hours Attendance 45 Stunden | hours Independent study 120 Stunden | hours Hours of week 3.0 Recommended semester Frequency takes place each winter term Compulsory/Elective (C/E) Core elective english Language

# Contents

- Applications / typical problems dealt with by machine learning
- basic data analysis pipeline (from data recording to output shaping)
- software libraries
- linear methods (e.g. LDA, logistic regression, ICA, PCA, OLSR) for dimensionality reduction, classification, regression and blind source separation
- non-linear methods (e.g. support vector machines, kernel PCA, decision trees / random forests, neural networks) for classification and regression
- unsupervised clustering (e.g. k-means, DBSCAN)
- algorithm independent principles in machine learning (z.b. bias-variance trade-off, model complexity, regularization, validation strategies, interpretation of trained machine learning models, basic optimization approaches, feature selection, data visualization)

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

#### Literature

Duda, Hart and Stork: Pattern Classification Christopher Bishop: Pattern Recognition and Machine Learning Hastie, Tibshirani and Friedman: The Elements of Statistical Learning Mitchell: Machine Learning Murphy: Machine Learning – a Probabilistic Perspective

Criminisi et. al: Decision Forests for Computer Vision and Medical Image Analysis Schölkopf & Smola: Learning with Kernels Goodfellow, Bengio and Courville: Deep Learning Michael Nielsen: Neural Networks and Deep Learning

In addition, literature for every section of the course is announced during these sections.

Compulsory requirement

keine | none

Recommended requirement

We have to rely on a solid background in basic math, specifically linear algebra (an eigenvalue decomposition, matrix operations, covariance matrices etc. should be very familiar concepts), calculus and probability theory.

We use the Python programming language for most of our assigments. If you do not yet have Python experience, you must ramp up at least basic knowledge thereof.

We recommend basic knowledge of optimization and of the scikit-learn Python library.

# Teaching method

#### For in-class lectures:

Despite the large lecture rooms, a teacher-centered style shall be enriched as much as possible by measures like:

- interactive question and answer rounds
- discussions in sub-groups, reporting to the large group
- cross-teaching
- problem-oriented teaching e.g. via data analysis competition
- repetition of important concepts in slightly altered contexts.

#### For virtual lectures:

- flipped classroom teaching with videos provided
- Q&A sessions to discuss the videos' content
- Cross-teaching via Ilias forum
- problem-oriented teaching e.g. via data analysis competition
- repetition of important concepts in slightly altered contexts.

| Name of module                                                    | Number of module |
|-------------------------------------------------------------------|------------------|
| Machine Learning 11LE13MO-1153_PO 2                               |                  |
| course                                                            |                  |
| Maschinelles Lernen / Machine Learning - Exercises                |                  |
| Event type                                                        | Number           |
| excercise course                                                  | 11LE13Ü-1153     |
| Organizer                                                         |                  |
| Department of Computer Science, Professorship in Machine Learning |                  |

Department of Computer Science, Professorship in Machine Learning

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 15 Stunden   hours           |
| Hours of week             | 1.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

#### Contents

The exercises are intended to give students a better understanding of the most important techniques they learn during lectures. They are expected to implement some selected methods to gain experience in practical applications.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

# Compulsory requirement

none

# Recommended requirement

none

| Name of module                                                                                             | Number of module      |
|------------------------------------------------------------------------------------------------------------|-----------------------|
| Rechnerarchitektur / Computer Architecture                                                                 | 11LE13MO-2020_PO 2020 |
| Responsible                                                                                                |                       |
| Prof. Dr. Armin Biere<br>Prof. Dr. Christoph Scholl                                                        |                       |
| Organizer                                                                                                  |                       |
| Department of Computer Science, Computer Architecture<br>Department of Computer Science, Operating Systems |                       |
| Faculty                                                                                                    |                       |
| Faculty of Engineering                                                                                     |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement | Compu | lsory | requi | irement |
|------------------------|-------|-------|-------|---------|
|------------------------|-------|-------|-------|---------|

keine | none

Recommended requirement

Grundlegendes Wissen und Kenntnisse aus dem Bereich der technischen Informatik (analog zum Modul Technische Informatik), Grundlagen binärer Mathematik; Grundlagen zu digitalen Schaltkreisen; Programmierkenntnisse in C / C ++ |

Basic knowledge and in the area of technical informatics (analogous to the module Technische Informatik), fundamentals of binary mathematics; basic knowledge of digital circuits; programming skills in C / C ++

| Assigned Courses                                        |                  |                    |      |     |                             |
|---------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                    | Туре             | C/E                | ECTS | HoW | Workload                    |
| Rechnerarchitektur / Computer Architecture<br>- Lecture | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 Stun-<br>den  <br>hours |
| Rechnerarchitektur / Computer Architecture - Exercises  | excercise course | Core elec-<br>tive |      | 1.0 |                             |

# Qualification

Students will be introduced to methods of designing computers, which will cover the topics of testing and verification of digital circuits, processor data and control paths, pipelining and parallelism. They will learn about the RISC-V instruction set and related CPUs. Students will learn to maximize the performance of computing machinery and how to guarantee the correctness of circuits. Finally, they understand how the

restrictions resulting from digital technology and the specific computer architectures affect higher levels of abstraction, especially those of software technology.

Examination achievement

Written exam (usually 90 to 180 minutes)

Course achievement

Exercise sheets have to be completed and handed in on a regular basis. These will be scored and awarded with points. To successfully complete the course work (Studienleistung), you need to have reached at least 50% of points per exercise sheet.

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Weiterführende Vorlesung | Advanced Lectures
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Essential Lectures in Computer Science

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                                                                             | Number of module      |
|------------------------------------------------------------------------------------------------------------|-----------------------|
| Rechnerarchitektur / Computer Architecture                                                                 | 11LE13MO-2020_PO 2020 |
| course                                                                                                     |                       |
| Rechnerarchitektur / Computer Architecture - Lecture                                                       |                       |
| Event type                                                                                                 | Number                |
| lecture course                                                                                             | 11LE13V-2020          |
| Organizer                                                                                                  |                       |
| Department of Computer Science, Computer Architecture<br>Department of Computer Science, Operating Systems |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 45 Stunden   hours           |
| Independent study         | 120 Stunden   hours          |
| Hours of week             | 3.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

An introduction to fundamental questions, methods and techniques of computer design and computer architecture is given. The following topics are included:

Instructions, Logic Design, Digital Circuit Verification, Testing, Placement & Routing, Single-Cycle Datapath & Control, Pipelining and Pipelining Hazards, Parallelism, Exception and Interrupts

# Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

# Literature

Mainly:

David A. Patterson, John L. Hennesey - "Computer Organization and Design - The Hardware Software Interface [RISC-V Edition]

Also helpful:

- J.Teich: Digitale Hardware/Software-Systeme, Springer Verlag, 1997.
- Becker, Bernd and Drechsler, Rolf and Molitor, Paul, "Technische Informatik Eine Einführung", Pearson Studium.
- Tanenbaum: Structured Computer Organization, Prentice Hall, 3rd Edition, 1990.

#### Compulsory requirement

keine | none

↑

Recommended requirement

Edition: 10. April 2025

EXA 830 (09/2024) MODULE DESCRIPTION

Grundlegendes Wissen und Kenntnisse aus dem Bereich der technischen Informatik (analog zum Modul Technische Informatik), Grundlagen binärer Mathematik; Grundlagen zu digitalen Schaltkreisen; Programmierkenntnisse in C / C ++ |

Basic knowledge and in the area of technical informatics (analogous to the module Technische Informatik), fundamentals of binary mathematics; basic knowledge of digital circuits; programming skills in C / C ++

Faculty of Engineering

Page 43 of 320

| Name of module                                                                                             | Number of module      |
|------------------------------------------------------------------------------------------------------------|-----------------------|
| Rechnerarchitektur / Computer Architecture                                                                 | 11LE13MO-2020_PO 2020 |
| course                                                                                                     |                       |
| Rechnerarchitektur / Computer Architecture - Exercises                                                     |                       |
| Event type                                                                                                 | Number                |
| excercise course                                                                                           | 11LE13Ü-2020          |
| Organizer                                                                                                  |                       |
| Department of Computer Science, Computer Architecture<br>Department of Computer Science, Operating Systems |                       |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 15 Stunden   hours           |
| Hours of week             | 1.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

#### Contents

Die Übungen sollen den Studenten ein besseres Verständnis der wichtigsten Techniken vermitteln, die sie während der Vorlesungen lernen, indem sie die Prinzipien und Methoden anwenden.

The exercises are intended to give students a better understanding of the most important techniques they learn during lectures by applying the principles and methods.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

# Compulsory requirement

| Name of module                                                                                                | Number of module      |
|---------------------------------------------------------------------------------------------------------------|-----------------------|
| Softwaretechnik / Software Engineering                                                                        | 11LE13MO-2030_PO 2020 |
| Responsible                                                                                                   |                       |
| Prof. Dr. Andreas Podelski                                                                                    |                       |
| Organizer                                                                                                     |                       |
| Department of Computer Science, Programming Languages<br>Department of Computer Science, Software Engineering |                       |
| Faculty                                                                                                       |                       |
| Faculty of Engineering                                                                                        |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

| Compulsory requirement                                                                                      |
|-------------------------------------------------------------------------------------------------------------|
| keine   none                                                                                                |
| Recommended requirement                                                                                     |
| Basic knowledge about practical Computer Science concepts, algorithms and datastructure, Programming Skills |

| Assigned Courses                                      |                  |                    |      |     |                             |
|-------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                  | Туре             | C/E                | ECTS | HoW | Workload                    |
| Softwaretechnik / Software Engineering -<br>Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 Stun-<br>den  <br>hours |
| Softwaretechnik / Software Engineering -<br>Exercises | excercise course | Core elec-<br>tive |      | 1.0 |                             |

# Qualification

Students know the basic modeling techniques and construction principles for software systems, they have an overview over the challenges of software engineering and the techniques and tools to address these challenges. They have knowledge of the main activities during software development (in particular project management, requirements engineering, design, testing, formal verification) with an emphasis on formal methods. Students know the foundations of process models, software metrics, approaches to requirements specification and analysis, (formal) modelling and analysis techniques, design and architecture patterns, testing, and program verification, and can apply these techniques on a small scale and can acquire advanced techniques on their own. Students have applied formal methods in example scenarios and are able to assess in which situations such methods are useful.

Examination achievement

Written exam (usually 90 to 180 minutes)

### Course achievement

Exercise sheets have to be completed and handed in on a regular basis. These will be scored and awarded with points. To successfully complete the course work (Studienleistung), you need to have reached at least 50% of points.

# Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Weiterführende Vorlesung | Advanced Lectures
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Essential Lectures in Computer Science

Part of the specialization Cyber-Physical Systems in Master of Science Informatik/Computer Science bzw. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                                                                                | Number of module      |
|---------------------------------------------------------------------------------------------------------------|-----------------------|
| Softwaretechnik / Software Engineering                                                                        | 11LE13MO-2030_PO 2020 |
| course                                                                                                        |                       |
| Softwaretechnik / Software Engineering - Lecture                                                              |                       |
| Event type                                                                                                    | Number                |
| lecture course                                                                                                | 11LE13V-2030          |
| Organizer                                                                                                     |                       |
| Department of Computer Science, Programming Languages<br>Department of Computer Science, Software Engineering |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 40 Stunden   hours           |
| Independent study         | 127 Stunden   hours          |
| Hours of week             | 3.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

Software engineering is "the application of engineering to software". This lecture provides knowledge of the fundamental techniques in software engineering:

Revision Control, Process Models, Requirements Analysis, Formal and Semiformal Modeling Techniques, Object Oriented Analysis, Object Oriented Design, Design Patterns, Testing.

**Examination achievement** 

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

#### Literature

- Ludewig, J. and Lichter, H. Software Engineering
- Jacobson, I. et al. Object Oriented Software-Engineering A Use Case Driven Approach
- Davis, A. Software Requirements Analysis and Specification

#### Compulsory requirement

keine | none

Recommended requirement

Basic knowledge about practical Computer Science concepts, algorithms and datastructure, Programming Skills

(for Bachelor of Science: Participation in Softwarepraktikum)

| Name of module                                                                                                | Number of module      |
|---------------------------------------------------------------------------------------------------------------|-----------------------|
| Softwaretechnik / Software Engineering                                                                        | 11LE13MO-2030_PO 2020 |
| course                                                                                                        |                       |
| Softwaretechnik / Software Engineering - Exercises                                                            |                       |
| Event type                                                                                                    | Number                |
| excercise course                                                                                              | 11LE13Ü-2030          |
| Organizer                                                                                                     |                       |
| Department of Computer Science, Programming Languages<br>Department of Computer Science, Software Engineering |                       |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 13 Stunden   hours           |
| Hours of week             | 1.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Languages                 | german, english              |

| Contents |
|----------|
|----------|

The exercises consist of theoretical assignments and programming assignments, to apply the methods and concepts from the lecture.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

# Compulsory requirement

| Name of node           | Number of node          |
|------------------------|-------------------------|
| Specialization Course  | 11LE13KT-Spez Vorlesung |
| Faculty                |                         |
| Faculty of Engineering |                         |

| Compulsory/Elective (C/E) | Compulsory |
|---------------------------|------------|
| ECTS-Points               | 36.0       |

# Comment

Students have to take at least 5 Specialization Courses and are allowed at most 6 Specialization Courses (depending on number of Advanced Lectures - together it must be 7 courses).

Please note:

If you choose to take an additional Computer Science lecture in the Customized Course Selection, that one will be counted as an 8th lecture, overall.

| Name of module                                            | Number of module      |  |
|-----------------------------------------------------------|-----------------------|--|
| Advanced Algorithms                                       | 11LE13MO-1326_PO 2020 |  |
| Responsible                                               |                       |  |
| Prof. Dr. Fabian Kuhn                                     |                       |  |
| Organizer                                                 |                       |  |
| Department of Computer Science, Algorithms and Complexity |                       |  |
| Faculty                                                   |                       |  |
| Faculty of Engineering                                    |                       |  |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 2                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

## Compulsory requirement

keine | none

Recommended requirement

some background in algorithm design/analysis and probability theory is expected (as gained in the course "Algorithms Theory")

| Assigned Courses    |                  |                    |      |     |                             |
|---------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                | Туре             | C/E                | ECTS | HoW | Workload                    |
| Advanced Algorithms | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Advanced Algorithms | excercise course | Core elec-<br>tive |      | 2.0 |                             |

| Qualification                                                                                                                                    |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Students have advanced knowlegde about modern algorithmic techniques. They know the disadvantages of various methods for different applications. | advantages and |

Examination achievement

Oral exam (usually 30 or 45 minutes)

| Course achievement                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| none                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Usability                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Compulsory elective module for students of the study program <ul> <li>M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung   Specialization Courses</li> <li>M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science</li> </ul> Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering |
| $\uparrow$                                                                                                                                                                                                                                                                                                                                                                                                                |

| Name of module                                            | Number of module      |
|-----------------------------------------------------------|-----------------------|
| Advanced Algorithms                                       | 11LE13MO-1326_PO 2020 |
| course                                                    |                       |
| Advanced Algorithms                                       |                       |
| Event type                                                | Number                |
| lecture course                                            | 11LE13V-1326          |
| Organizer                                                 |                       |
| Department of Computer Science, Algorithms and Complexity |                       |

Department of Computer Science, Algorithms and Complexity

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Attendance                | 28                              |
| Independent study         | 124                             |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

# Contents

In the course, we discuss modern algorithmic techniques. The course covers a variety of topics, such as for example:

- approximation algorithms
- randomized algorithms
- graph embeddings
- graph sparsification
- theory of learningk
- sketching and streaming algorithms
- continuous methods in combinatorial optimization

#### Examination achievement

See module level

Course achievement

See module level

Literature

Literature will be provided in the lecture.

Compulsory requirement

none

#### Recommended requirement

There is no formal requirement, however some background in algorithm design/analysis and probability theory is expected. Having passed the algorithm theory course (or a similar course) prior to taking the advanced algorithms lecture is highly recommended.

| Name of module      | Number of module      |  |  |
|---------------------|-----------------------|--|--|
| Advanced Algorithms | 11LE13MO-1326_PO 2020 |  |  |
| course              |                       |  |  |
| Advanced Algorithms |                       |  |  |
| Event type          | Number                |  |  |
| excercise course    | 11LE13Ü-1326          |  |  |
| Organizer           |                       |  |  |
| Organizer           |                       |  |  |

Department of Computer Science, Algorithms and Complexity

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 28                              |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

#### Contents

The lecture will be complemented by theoretical exercises that allow to apply and further develop ideas and techniques discussed in the lecture. The exercises are an integral part of the lecture, the topics covered by the exercises will also be part of the oral exam. There are two graded homework assignments that count 30% towards the final grade of the course.

**Examination achievement** 

See module level

Course achievement

See module level

Compulsory requirement

| Name of module                                    | Number of module      |
|---------------------------------------------------|-----------------------|
| Advanced Computer Graphics                        | 11LE13MO-1106_PO 2020 |
| Responsible                                       |                       |
| Prof. DrIng. Matthias Teschner                    |                       |
| Organizer                                         |                       |
| Department of Computer Science, Computer Graphics |                       |
| Faculty                                           |                       |
| Faculty of Engineering                            |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 2                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| keine   none                                                                                                                                          |
| Recommended requirement                                                                                                                               |
| Programming skills<br>Knowledge in Algorithms and Data Structures, Linear Algebra and Analysis<br>Knowledge in Image Processing and Computer Graphics |

| Assigned Courses                                                               |                  |                    |      |     |                             |
|--------------------------------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                                           | Туре             | C/E                | ECTS | HoW | Workload                    |
| Fortgeschrittene Computergraphik / Advan-<br>ced Computer Graphics - Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Fortgeschrittene Computergraphik / Advan-<br>ced Computer Graphics - Exercises | excercise course | Core elec-<br>tive |      | 2.0 |                             |

# Qualification

Students know the main concepts for image synthesis as well as global illumination approaches. They are able to use formal governing equation and solution techniques and know how to describe light. They know bidirectional reflectance distribution functions for material modeling and can apply Monte-Carlo techniques for approximately solving the rendering equation that describes the interaction of light with surfaces.

Examination achievement

Written exam (usually 90 to 180 minutes)

Course achievement

none

Recommendation

Working on the exercise sheets is voluntary, but strongly recommended.

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                                          | Number of module      |  |  |
|-------------------------------------------------------------------------|-----------------------|--|--|
| Advanced Computer Graphics                                              | 11LE13MO-1106_PO 2020 |  |  |
| course                                                                  |                       |  |  |
| Fortgeschrittene Computergraphik / Advanced Computer Graphics - Lecture |                       |  |  |
| Event type                                                              | Number                |  |  |
| lecture course                                                          | 11LE13V-1106          |  |  |
| Organizer                                                               | <u>.</u>              |  |  |
| Department of Computer Science, Computer Graphics                       |                       |  |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 30 Stunden                   |
| Independent study         | 90 Stunden                   |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

The course addresses all aspects of the raytracing technique. The curriculum covers photometric quantities to describe light, bidirectional reflectance distribution functions for material modeling and Monte-Carlo techniques for approximately solving the rendering equation that describes the interaction of light with surfaces. The curriculum also addresses the homogeneous notation, spatial data structures for ray-object intersections and sampling strategies.

#### Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

# Literature

- Dutre, Bala, Bekaert: Advanced Global Illumination, A K Peters, 2006
- Pharr, Humphreys: Physically Based Rendering, Elsevier, 2010
- Shirley, Keith Morley: Realistic Ray Tracing, A K Peters, 2003
- Suffern: Ray Tracing From The Ground Up, A K Peters, 2007
- Foley, vanDam, Feiner, Hughes: Computer Graphics Principles and Practice -, Addison Wesley, ISBN 0-201-84840-6
- Tomas Moller and Eric Haines: Real-Time Rendering, A. K. Peters Limited, 1999, ISBN 1-56881-182-9
- David F. Rogers: Procedural Elements for Computer Graphics, McGraw-Hill, 1998, ISBN 0-07-053548-5
- OpenGL Programming Guide, Second Edition, Addison-Wesley, 1997, ISBN 0-201-461138-2

# Compulsory requirement

# Recommended requirement

Programming skills

Knowledge in Algorithms and Data Structures, Linear Algebra and Analysis Knowledge in Image Processing and Computer Graphics

| Name of module                                                          | Number of module      |  |
|-------------------------------------------------------------------------|-----------------------|--|
| Advanced Computer Graphics                                              | 11LE13MO-1106_PO 2020 |  |
| course                                                                  |                       |  |
| Fortgeschrittene Computergraphik / Advanced Computer Graphics - Exercis | es                    |  |
| Event type                                                              | Number                |  |
| excercise course                                                        | 11LE13Ü-1106          |  |
| Organizer                                                               |                       |  |
| Department of Computer Science, Computer Graphics                       |                       |  |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 30 Stunden                   |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

Contents

Practical development of ray tracing components based on concepts from lectures

**Examination achievement** 

See module level

Course achievement

See module level

Compulsory requirement

| Name of module                                                 | Number of module      |
|----------------------------------------------------------------|-----------------------|
| Advanced Deep Learning                                         | 11LE13MO-1146_PO 2020 |
| Responsible                                                    |                       |
| Prof. Dr. Abhinav Valada                                       |                       |
| Organizer                                                      |                       |
| Department of Computer Science, Autonomous Intelligent Systems |                       |
| Faculty                                                        |                       |
| Faculty of Engineering                                         |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 hours                    |
| Hours of week             | 4.0                          |
| Recommended semester      | 2                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

| Compulsory requirement                            |
|---------------------------------------------------|
| none                                              |
| Recommended requirement                           |
| Fundamentals of Deep Learning<br>Machine Learning |

| Assigned Courses       |                  |                    |      |     |           |
|------------------------|------------------|--------------------|------|-----|-----------|
| Name                   | Туре             | C/E                | ECTS | HoW | Workload  |
| Advanced Deep Learning | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 hours |
| Advanced Deep Learning | excercise course | Core elec-<br>tive |      | 2.0 |           |

# Qualification

Students have a clear understanding of advanced deep learning techniques and know how to apply them in various domains.

They know modern architectures including topics in Graph Neural Networks, Multi-dimensional Deep Learning, Transformers, Metric Learning, Cross-modal Learning, Transfer Learning, Domain Adaptation, Selfsupervised Learning, Multi-task Learning, Meta-Learning, and Continual Learning.

Examination achievement

Oral examination (usually 30 or 45 minutes)

Course achievement

Presentation

# Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence in Master of Science Informatik/Computer Science bzw. MSc Embedded Systems Engineering

| Name of module         | Number of module      |
|------------------------|-----------------------|
| Advanced Deep Learning | 11LE13MO-1146_PO 2020 |
| course                 |                       |
| Advanced Deep Learning |                       |
| Event type             | Number                |
| lecture course         | 11LE13V-1146_PO 2020  |
| Organizer              |                       |

Department of Computer Science, Autonomous Intelligent Systems

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 hours                    |
| Attendance                | 32 Stunden                   |
| Independent study         | 116 Stunden                  |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

Deep learning techniques are constantly evolving and are nowadays recognized as the state-of-the-art solution in many problems in various domains. This course will provide a clear understanding of advanced deep learning techniques and modern architectures include topics in Graph Neural Networks, Multi-dimensional Deep Learning, Transformers, Metric Learning, Cross-modal Learning, Transfer Learning, Domain Adaptation, Self-supervised Learning, Multi-task Learning, Meta-Learning, and Continual Learning.

**Examination achievement** 

See module level

Course achievement

See module level

Compulsory requirement

#### Recommended requirement

Fundamentals of Deep Learning Machine Learning

ſ

| Name of module         | Number of module      |
|------------------------|-----------------------|
| Advanced Deep Learning | 11LE13MO-1146_PO 2020 |
| course                 |                       |
| Advanced Deep Learning |                       |
| Event type             | Number                |
| excercise course       | 11LE13Ü-1146_PO 2020  |
| Organizer              |                       |

Department of Computer Science, Autonomous Intelligent Systems

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 32 Stunden                   |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

|          |   |    | ۰. |   |   | $\sim$ |
|----------|---|----|----|---|---|--------|
| Contents | 5 | nt | te | n | 0 | C      |

Students learn to apply some of the techniques from the lecture.

Examination achievement

See module level

Course achievement

See module level

Compulsory requirement

| Name of module                                                   | Number of module      |
|------------------------------------------------------------------|-----------------------|
| Algorithms for Wireless Communication                            | 11LE13MO-1157_PO 2020 |
| Responsible                                                      |                       |
| Prof. Dr. Christian Schindelhauer                                |                       |
| Organizer                                                        |                       |
| Department of Computer Science, Computer Networks and Telematics |                       |
| Faculty                                                          |                       |
| Faculty of Engineering                                           |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 1                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement                                                                       |
|----------------------------------------------------------------------------------------------|
| keine   none                                                                                 |
| Recommended requirement                                                                      |
| Basic knowledge about Distributed Systems, Computer Networks, Algorithms and Data Structures |

| Assigned Courses                      |                  |                    |      |     |                             |
|---------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                  | Туре             | C/E                | ECTS | HoW | Workload                    |
| Algorithms for Wireless Communication | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Algorithms for Wireless Communication | excercise course | Core elec-<br>tive |      | 2.0 |                             |

# Qualification

After this course students can apply existent theoretical communication models of computer science and information theory to a given problem and analyse the quality of a given algorithmic solutions.

# Examination achievement

If there are 20 or fewer registered participants, an oral exam (usually 30 or 45 minutes); if there are more than 20 registered participants, a written exam (usually 90 to 180 minutes). Details will be announced in due time.

#### Course achievement

Exercise sheets have to be completed and handed in on a regular basis. These will be scored and awarded with points. To successfully complete the course work (Studienleistung), you need to have reached at least 50% of the achievable points.

# Usability

## Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Cyber-Physical Systems in Master of Science Informatik/Computer Science bzw. MSc Embedded Systems Engineering

| Name of module                        | Number of module      |
|---------------------------------------|-----------------------|
| Algorithms for Wireless Communication | 11LE13MO-1157_PO 2020 |
| course                                |                       |
| Algorithms for Wireless Communication |                       |
| Event type                            | Number                |
| lecture course                        | 11LE13V-1157_PO 2020  |
| Organizer                             |                       |

Department of Computer Science, Computer Networks and Telematics

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Attendance                | 32 Stunden                      |
| Independent study         | 116 Stunden                     |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

# Contents

The course offers a selected view from the wide area of topics regarding wireless communication under the algorithmic and partly also the information theoretic view. E.g. wireless communication models in computer science and information theory. Physical foundations of wireless communication: electromagnetic and accoustic communication. Medium access from Radio Networking to MACAW. Multi- and single-commodity flow problems, shortest path for route detection and optimization for congestions, delay and energy. Network coding, graph embedding, MIMO power gain and diversity gain. Models for nearfield and quantum communication.

Examination achievement

See module level

Course achievement

See module level

Literature

Current research papers to be announced in the course.

Compulsory requirement

none

Recommended requirement

Distributed Systems, Computer Networks, Algorithms and Data Structures

## Recommendation

The lecture will be recorded (unlike the exercise class). All course material will be made available online to participants.

| Name of module                        | Number of module      |
|---------------------------------------|-----------------------|
| Algorithms for Wireless Communication | 11LE13MO-1157_PO 2020 |
| course                                |                       |
| Algorithms for Wireless Communication |                       |
| Event type                            | Number                |
| excercise course                      | 11LE13Ü-1157_PO 2020  |
| Organizer                             |                       |

Department of Computer Science, Computer Networks and Telematics

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 32 Stunden                      |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Languages                 | german, english                 |

#### Contents

Exercise class with tasks in discrete optimization for network routing, path loss estimations for SNR models, mathematical simulations of networks in computer algebra systems, the mathematics of basic signal processing, algorithm design and analysis of routing algorithms and shortest path algorithms, lower bound analysis.

Examination achievement

See module level

Course achievement

See module level

Compulsory requirement

 $\uparrow$ 

| Name of module                                                    | Number of module      |
|-------------------------------------------------------------------|-----------------------|
| Automated Machine Learning                                        | 11LE13MO-1415_PO 2020 |
| Responsible                                                       |                       |
| Prof. Dr. Frank Roman Hutter                                      |                       |
| Organizer                                                         |                       |
| Department of Computer Science, Professorship in Machine Learning |                       |
| Faculty                                                           |                       |
| Faculty of Engineering                                            |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 2                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

| Compulsory requirement | Compu | lsory re | equirement |
|------------------------|-------|----------|------------|
|------------------------|-------|----------|------------|

- either lecture: "Machine Learning"
- or lecture: "Foundations of Deep Learning"

Recommended requirement

- Solid understanding of machine learning
- Hands-on experience with deep learning
- Programming skills in Python

| Assigned Courses           |                  |                    |      |     |           |
|----------------------------|------------------|--------------------|------|-----|-----------|
| Name                       | Туре             | C/E                | ECTS | HoW | Workload  |
| Automated Machine Learning | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 hours |
| Automated Machine Learning | excercise course | Core elec-<br>tive |      | 2.0 |           |

### Qualification

Based on machine learning (ML), AI achieved major breakthroughs in the last years. However, applying machine learning and in particular deep learning (DL) in practice is a challenging task and requires a lot of expertise. Among other things, the success of ML/DL applications depends on many design decisions, including an appropriate preprocessing of the data, choosing a well-performing machine learning algorithm and tuning its hyperparameters, giving rise to a complex pipeline. Unfortunately, even experts need days, weeks or even months to find well-performing pipelines and can still make mistakes when optimizing their pipelines.

After completion of this course students will be able to discuss meta-algorithmic approaches to automatically search for, and obtain well-performing machine learning systems by means of automated machine learning (AutoML).

Such AutoML systems allow for faster development of new ML/DL applications, require far less expert knowledge than doing everything from scratch and often even outperform human developers. Students know how to use such AutoML systems, to develop their own systems and to understand ideas behind state-of-the-art AutoML approaches.

Examination achievement

oral examination (usually 30 or 45 minutes)

Course achievement

Doing a project (workload about 80h)

Usability

Compulsory elective module for students of the study program

M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses

M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

and

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

| Name of module             | Number of module      |
|----------------------------|-----------------------|
| Automated Machine Learning | 11LE13MO-1415_PO 2020 |
| course                     |                       |
| Automated Machine Learning |                       |
| Event type                 | Number                |
| lecture course             | 11LE13V-1415          |
| Organizer                  |                       |

Department of Computer Science, Professorship in Machine Learning

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 hours                    |
| Attendance                | 30                           |
| Independent study         | 90                           |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

\* Design of configuration spaces for automated machine learning

\* Hyperparameter Optimization with Bayesian Optimization

\* Neural architecture search with Reinforcement learning, Bayesian Optimization and Evoluationary strategies

\* Transfer-learning, meta-learning, pre-training and fine-tuning

\* Learning-to-learn

\* Hyperparameter importance analysis

# Examination achievement

See module level

Course achievement

See module level

Literature

Selected material from the book "AutoML: Methods, Systems, Challenges" by Hutter, Kotthoff and Van-Schoren (freely available online at www.automl.org/book), as well as other surveys and research articles.

Compulsory requirement

\* Lecture: "Machine Learning"

\* Lecture: "Foundations of Deep Learning"

#### Recommended requirement

\* Solid understanding of machine learning

\* Hands-on experience with deep learning

```
↑
```
| Name of module             | Number of module      |
|----------------------------|-----------------------|
| Automated Machine Learning | 11LE13MO-1415_PO 2020 |
| course                     |                       |
| Automated Machine Learning |                       |
| Event type                 | Number                |
| excercise course           | 11LE13Ü-1415          |
| Organizer                  |                       |

Department of Computer Science, Professorship in Machine Learning

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 30                           |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

### Contents

Die Übungen orientieren sich an den Vorlesungen. In den praktisch angelegten Übungen werden die Inhalte der Vorlesung praktisch selbstständig umgesetzt.

Am Ende gibt es ein großes Projekt (80h), in dem die Studierenden die Inhalte eigenständig auf ein neues Problem anwenden.

Dieses Projekt wird im ersten Teil der mündlichen Prüfung vorgestellt.

The exercises follow the lectures. In the practically-oriented exercises students will independently implement the lecture material.

In the end there is a large project (80h), in which the students apply the contents of the course to a new problem domain.

This project will be presented in the first part of the oral exam.

Examination achievement

See module level

Course achievement

See module level

↑

## Compulsory requirement

| Name of module Number of modul                 |                       |
|------------------------------------------------|-----------------------|
| Bioinformatics I                               | 11LE13MO-1309_PO 2020 |
| Responsible                                    |                       |
| Prof. Dr. Rolf Backofen                        |                       |
| Organizer                                      |                       |
| Department of Computer Science, Bioinformatics |                       |
| Faculty                                        |                       |
| Faculty of Engineering                         |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 2                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

#### Compulsory requirement

keine | none

Recommended requirement

Von Vorteil bzw. stark empfohlen sind:

- Grundlegende, einfache molekularbiologische Kenntnisse
- Grundlegende Kenntnisse in Algorithmen, wie aus Informatik Grundstudium/Bachelor

Advantageous or strongly recommended prerequisites:

- Basic, simple knowledge of molecular biology
- Basic knowledge of algorithms, such as from computer science undergraduate / bachelor's degree

| Assigned Courses                               |                  |                    |      |     |                             |
|------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                           | Туре             | C/E                | ECTS | HoW | Workload                    |
| Bioinformatik I / Bioinformatics I - Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Bioinformatik I / Bioinformatics I - Exercises | excercise course | Core elec-<br>tive |      | 2.0 |                             |

# Qualification

The course shall give an overview of basic bioinformatics topics and understanding of some fundamental algorithms. The special focus of the course is on sequence analysis.

In the module we fundamental principles in biology are revised and illustrate target problems and associated applications.

Students will be able to explain and apply fundamental algorithms regarding sequence alignment and phylogenetic trees and will be capable to design and analyze algorithms that elaborate discrete sequences. Students will understand how to solve an optimization problem using Dynamic Programming techniques and be able to design and analyze new algorithms. By the end of the module, students will become familiar with applications of Markov models in Bioinformatics and be able to compute phylogenetic trees.

Examination achievement

Written exam (usually 90 to 180 minutes)

If the number of participants is small (< 20), an oral examination may be held instead. The students will be informed in good time.

Course achievement

none

Recommendation

Solving exercise sheets is optional but highly recommended.

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. M.Sc. Embedded Systems Engineering

and

Part of the specialization Biomedical Engineering (BE) in MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                 | Number of module      |
|------------------------------------------------|-----------------------|
| Bioinformatics I                               | 11LE13MO-1309_PO 2020 |
| course                                         |                       |
| Bioinformatik I / Bioinformatics I - Lecture   |                       |
| Event type                                     | Number                |
| lecture course                                 | 11LE13V-1309          |
| Organizer                                      |                       |
| Department of Computer Science, Bioinformatics |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 30                           |
| Independent study         | 120                          |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

Sequenzalignment:

- slobal und lokal, Distanz und Ähnlichkeit
- affine and beliebige Gap-Kostenfunktionen

Substitutionsmatrizen und Markov-Ketten:

- Markov-Modelle und deren Eigenschaften
- Markov-Ketten und Substitutionsmatrizen, z.B. PAM

Phylogenetische Bäume:

- hierarchische Methoden und clustering
- Markov-Prozesse und maximum likelihood
- quartet puzzling

Examination achievement

See module level

Course achievement

See module level

Compulsory requirement

**Recommended requirement** 

Von Vorteil bzw. vorausgesetzt sind

Grundlegende, einfache molekularbiologische Kenntnisse

Grundlegende Kenntnisse in Algorithmen, wie aus Informatik Grundstudium/Bachelor

| Name of module Number of modul                 |                       |
|------------------------------------------------|-----------------------|
| Bioinformatics I                               | 11LE13MO-1309_PO 2020 |
| course                                         |                       |
| Bioinformatik I / Bioinformatics I - Exercises |                       |
| Event type                                     | Number                |
| excercise course                               | 11LE13Ü-1309          |
| Organizer                                      |                       |
| Department of Computer Science, Bioinformatics |                       |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 28 Stunden                   |
| Independent study         | 124 Stunden                  |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

Participating in the the exercise sessions and solving the sheets deepens your understanding. You can use the exercise session for (supervised) solving the sheets or to ask questions. You can solve them independently or as group.

Examination achievement

See module level

Course achievement

See module level

↑

Compulsory requirement

| Name of module          | Number of module      |  |  |
|-------------------------|-----------------------|--|--|
| Bioinformatics II       | 11LE13MO-1310_PO 2020 |  |  |
| Responsible             |                       |  |  |
| Prof. Dr. Rolf Backofen |                       |  |  |
| Faculty                 |                       |  |  |
| Faculty of Engineering  |                       |  |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 2                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

Compulsory requirement

**Bioinformatics I** 

Recommended requirement

The foundations laid in "Bioinformatics I" will be assumed to be known.

Additional prerequisites:

- Basic, simple knowledge of molecular biology
- Basic knowledge of algorithms, such as from computer science undergraduate / bachelor's degree

| Assigned Courses                                 |                  |                    |      |     |                             |
|--------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                             | Туре             | C/E                | ECTS | HoW | Workload                    |
| Bioinformatik II / Bioinformatics II - Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Bioinformatik II / Bioinformatics II - Exercises | excercise course | Core elec-<br>tive |      | 2.0 |                             |

Qualification

This module is designed as a follow up for the course "Bioinformatics 1" or a similar one. Students will be given an advanced overview of bioinformatics topics with a deeper understanding of many fundamental algorithms.

They will learn well known multiple sequence alignment and analysis algorithms like BLAST and t-coffee and be able to explain them in detail. They will understand Hidden Markov modelling and will apply them to specific problems in Bioinformatics. Students will be able to distinguish various protein models and to compile folding kinetics information based on energy landscape models. Finally, they can calculate optimal RNA structures based on central prediction algorithms and explain the according methods.

Examination achievement

Oral exam (usually 30 or 45 minutes)

If the number of participants is very high (> 30), a written examination may be held instead. The students will be informed in good time.

Course achievement

none

Recommendation

Solving exercise sheets is optional but highly recommended.

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. M.Sc. Embedded Systems Engineering

and

Part of the specialization Biomedical Engineering (BE) in M.Sc. Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                 | Number of module      |
|------------------------------------------------|-----------------------|
| Bioinformatics II                              | 11LE13MO-1310_PO 2020 |
| course                                         |                       |
| Bioinformatik II / Bioinformatics II - Lecture |                       |
| Event type                                     | Number                |
| lecture course                                 | 11LE13V-1310          |
| Organizer                                      |                       |
| Department of Computer Science, Bioinformatics |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 32 Stunden                   |
| Independent study         | 116 Stunden                  |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

Multiple sequence alignment

- Scoring schemes
- Exact and heuristic methods (progressive approaches, t-coffee etc.)

## Hidden markov models

- Profile HMMs for multiple alignment
- Learning profile HMMs

#### Protein structure

Simple protein models

#### Fast sequence search

- BLAST
- BLAT
- Suffix trees

## Energy Landscapes

- Monte-Carlo sampling
- Abstractions
- Folding dynamics

## Examination achievement

See module level

# Course achievement

See module level

# Literature Clote, Backofen: Computational Molecular Biologie, An Introduction. Wiley & Sons. ISBN-10:

- 0471872520 ISBN-13: 978-0471872528 Durbin et al.: Biological Sequence Analysis. Cambridge University Press. ISBN-10: 0521629713 ISBN-13: 978-0521629713
- D.W. Mount: Bioinformatics Sequence and Genome Analysis Cold Spring Harbor

Compulsory requirement

Bioinformatics I

Recommended requirement

The foundations laid in Bioinformatics I will be assumed to be known.

Additional prerequisites:

- Basic, simple knowledge of molecular biology
- Basic knowledge of algorithms, such as from computer science undergraduate / bachelor's degree

| Name of module                                   | Number of module      |  |  |
|--------------------------------------------------|-----------------------|--|--|
| Bioinformatics II                                | 11LE13MO-1310_PO 2020 |  |  |
| course                                           |                       |  |  |
| Bioinformatik II / Bioinformatics II - Exercises |                       |  |  |
| Event type                                       | Number                |  |  |
| excercise course                                 | 11LE13Ü-1310          |  |  |
| Organizer                                        |                       |  |  |
| Department of Computer Science Bioinformatics    |                       |  |  |

Department of Computer Science, Bioinformatics

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 32 Stunden                   |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

Participating in the exercise sessions and solving the sheets deepens your understanding by applying the concepts from the lecture to real-life situations.

It is recommended as a preparation for the examination at the end of the semester.

**Examination achievement** 

See module level

Course achievement

See module level

Compulsory requirement

| Name of module                                        | Number of module      |
|-------------------------------------------------------|-----------------------|
| Blockchain and Cryptocurrencies                       | 11LE13MO-1235_PO 2020 |
| Responsible                                           | ·                     |
| Prof. Dr. Peter Thiemann                              |                       |
| Organizer                                             |                       |
| Department of Computer Science, Programming Languages |                       |
| Faculty                                               |                       |
| Faculty of Engineering                                |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 1                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement  |
|-------------------------|
| keine   none            |
| Recommended requirement |
| keine   none            |

| Assigned Courses                |                  |                    |      |     |                             |
|---------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                            | Туре             | C/E                | ECTS | HoW | Workload                    |
| Blockchain and Cryptocurrencies | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Blockchain and Cryptocurrencies | excercise course | Core elec-<br>tive |      | 2.0 |                             |

Students know the concepts of how blockchains work. They have insight in application scenarios, especially regarding the

monetary background, Bitcoin and other crypto currencies.

Cryptographic foundations, Transaction ability, Transaction legitimation, Consensus from Proof of Work to Proof of

Stake are understood.

Nonmonetary applications like Smart contracts from Ethereum to Tezos are known.

Students are aware of security impliciations and risks.

Examination achievement

Written exam (usually 90 to 180 minutes)

Course achievement

keine | none

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)

ſ

| Name of module Number of mod                          |                       |  |
|-------------------------------------------------------|-----------------------|--|
| Blockchain and Cryptocurrencies                       | 11LE13MO-1235_PO 2020 |  |
| course                                                |                       |  |
| Blockchain and Cryptocurrencies                       |                       |  |
| Event type                                            | Number                |  |
| lecture course                                        | 11LE13V-1235          |  |
| Organizer                                             |                       |  |
| Department of Computer Science, Programming Languages |                       |  |

Department of Computer Science, Programming Languages

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Attendance                | 28                              |
| Independent study         | 124                             |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

## Contents

Monetary background, Bitcoin and other crypto currencies, Cryptographic foundations, Transaction ability, Transaction legitimation, Consensus from Proof of Work to Proof of Stake, Nonmonetary applications, Smart contracts from Ethereum to Tezos, Security impliciations and risks

**Examination achievement** 

See module level

Course achievement

See module level

Literature

- Fabian Schär, Aleksander Berentsen. Bitcoin, Blockchain und Kryptoassets: Eine umfassende Einführung. Books on Demand. 2017
- Narayanan et al. Bitcoin and Cryptocurrency Technologies. Princeton University Press. 2016.

Compulsory requirement

keine | none

Recommended requirement

keine | none

| Name of module                  | Number of module      |  |  |
|---------------------------------|-----------------------|--|--|
| Blockchain and Cryptocurrencies | 11LE13MO-1235_PO 2020 |  |  |
| course                          |                       |  |  |
| Blockchain and Cryptocurrencies |                       |  |  |
| Event type                      | Number                |  |  |
| excercise course                | 11LE13Ü-1235          |  |  |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 28                              |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

| Contents                                                                                                |  |
|---------------------------------------------------------------------------------------------------------|--|
| Repetition, application, and consolidation of the lecture material with theoretical and practical tasks |  |
| Examination achievement                                                                                 |  |
| See module level                                                                                        |  |
| Course achievement                                                                                      |  |
| See module level                                                                                        |  |
| Compulsory requirement                                                                                  |  |
|                                                                                                         |  |
| $\uparrow$                                                                                              |  |

| Name of module                                        | Number of module      |  |
|-------------------------------------------------------|-----------------------|--|
| Compilerbau / Compiler Construction                   | 11LE13MO-1208_PO 2020 |  |
| Responsible                                           |                       |  |
| Prof. Dr. Peter Thiemann                              |                       |  |
| Organizer                                             |                       |  |
| Department of Computer Science, Programming Languages |                       |  |
| Faculty                                               |                       |  |
| Faculty of Engineering                                |                       |  |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 1                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement  |
|-------------------------|
| keine   none            |
| Recommended requirement |
| keine   none            |

| Assigned Courses                    |                  |                    |      |     |                             |
|-------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                | Туре             | C/E                | ECTS | HoW | Workload                    |
| Compilerbau / Compiler Construction | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Compilerbau / Compiler Construction | excercise course | Core elec-<br>tive |      | 2.0 |                             |

## Qualification

The students know basic techniques and tools of compiler construction and are able to apply them. They will be able to read and create specifications for syntactic and semantic analysis. They will know all stages of a simple compiler and be able to develop and assemble them into a working compiler. They know abstract intermediate representations and the concept of staging of different processing stages and are able to apply them.

## Examination achievement

If there are 20 or fewer registered participants, an oral exam (usually 30 or 45 minutes); if there are more than 20 registered participants, a written exam (usually 90 to 180 minutes). Details will be announced in due time.

| Course achievement                                                                                                                                                                                                                                                                                                                             |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| keine   none                                                                                                                                                                                                                                                                                                                                   |  |
| Usability                                                                                                                                                                                                                                                                                                                                      |  |
| <ul> <li>Compulsory elective module for students of the study program</li> <li>M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung   Specialization Courses</li> <li>M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science</li> <li>M.Sc. in Sustainable Systems Engineering (PO 2021)</li> </ul> |  |
| Part of the specialization Cyber-Physical Systems in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering                                                                                                                                                                                                      |  |
| <ul> <li>Wahlpflichtmodul für Studierende des Studiengangs</li> <li>B.Sc. in Informatik (PO 2018)</li> <li>M.Ed. Informatik (PO 2018)</li> <li>Master of Education Erweiterungsfach Informatik (PO 2021)</li> </ul>                                                                                                                            |  |

| Name of module                                    | Number of module      |  |
|---------------------------------------------------|-----------------------|--|
| Compilerbau / Compiler Construction               | 11LE13MO-1208_PO 2020 |  |
| course                                            |                       |  |
| Compilerbau / Compiler Construction               |                       |  |
| Event type                                        | Number                |  |
| lecture course                                    | 11LE13V-1208          |  |
| Organizer                                         |                       |  |
| Department of Computer Science, Programming Langu | 2006                  |  |

Department of Computer Science, Programming Languages

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Attendance                | 28 Stunden   hours              |
| Independent study         | 152 Stunden   hours             |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Languages                 | german, english                 |

## Contents

- Architektur eines Compilers
- Syntaktische und semantische Analyse
- Zwischensprachen und Transformation
- Instruktionsauswahl
- Registerallokation
- Analyse und Optimierung
- Garbage Collection
- Typen und Typinferenz

L

- Architecture of a compiler
- Syntactic and semantic analysis
- Intermediate representation and transformation
- Instruction selection
- Register allocation
- Code analysis and optimization
- Garbage collection
- Types and type inference

#### Examination achievement

See module level

Course achievement

See module level

| Literature                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Andrew Appel with Jens Palsberg, Modern Compiler Implementation in Java,<br/>2nd edition. Cambridge University Press (2002)</li> <li>Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers,<br/>Principles, Techniques, and Tools (2nd Edition). Prentice Hall, 2006.</li> <li>Reinhard Wilhelm and Dieter Maurer. Übersetzerbau Theorie, Konstruktion,<br/>Generierung 2. Auflage. Lehrbuch. Springer-Verlag, Berlin, Heidelberg, 1996</li> </ul> |  |  |
| Compulsory requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| keine   none                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| Recommended requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| keine   none                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |

 $\uparrow$ 

| Name of module                                       | Number of module      |  |
|------------------------------------------------------|-----------------------|--|
| Compilerbau / Compiler Construction                  | 11LE13MO-1208_PO 2020 |  |
| course                                               |                       |  |
| Compilerbau / Compiler Construction                  |                       |  |
| Event type                                           | Number                |  |
| excercise course                                     | 11LE13Ü-1208          |  |
| Organizer                                            |                       |  |
| Department of Computer Science, Programming Language | 195                   |  |

Department of Computer Science, Programming Languages

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 28 Stunden   hours              |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Languages                 | german, english                 |

### Contents

Im Rahmen der Übung wird exemplarisch ein Compiler für eine kleine Programmiersprache entwickelt. Dabei kommen

die Techniken und Inhalte der Vorlesung zum Einsatz.

The subject of the exercise is the development of a compiler for a small programming language. The development builds on the techniques and tools introduced in the lecture.

Examination achievement

See module level

Course achievement

See module level

## Compulsory requirement

 $\uparrow$ 

| Name of module                                                           | Number of module      |  |  |
|--------------------------------------------------------------------------|-----------------------|--|--|
| Computer Vision                                                          | 11LE13MO-1123_PO 2020 |  |  |
| Responsible                                                              |                       |  |  |
| Prof. Dr. Thomas Brox                                                    |                       |  |  |
| Organizer                                                                |                       |  |  |
| Department of Computer Science, Pattern Recognition and Image Processing |                       |  |  |
| Faculty                                                                  |                       |  |  |
| Faculty of Engineering                                                   |                       |  |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement                                                                                                                                |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| keine   none                                                                                                                                          |  |
| Recommended requirement                                                                                                                               |  |
| Fundamental mathematical knowledge and programming skills (in C++ or Python)<br>Basic knowledge in image processing and/or computer graphics concepts |  |

| Assigned Courses            |                  |                    |      |     |                             |
|-----------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                        | Туре             | C/E                | ECTS | HoW | Workload                    |
| Computer Vision - Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Computer Vision - Exercises | excercise course | Core elec-<br>tive |      | 2.0 |                             |

## Qualification

This course introduces the most important concepts in today's Computer Vision research. Students learn about some of the typical problems and methodologies in computer vision. After the module, they are capable to read current related literature and understand standard concepts used in computer vision research. Moreover, they can implement the techniques discussed in the lectures and to adapt them to their needs, if necessary.

Examination achievement

If there are 30 or fewer registered participants, an oral exam (usually 30 or 45 minutes); if there are more than 30 registered participants, a written exam (usually 90 to 180 minutes). Details will be announced in due time.

Course achievement

keine | none

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

M.Ed. Informatik (PO 2018)

Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module            | Number of module      |
|---------------------------|-----------------------|
| Computer Vision           | 11LE13MO-1123_PO 2020 |
| course                    |                       |
| Computer Vision - Lecture |                       |
| Event type                | Number                |
| lecture course            | 11LE13V-1123          |
| Organizer                 |                       |

Department of Computer Science, Pattern Recognition and Image Processing

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 32 Stunden                   |
| Independent study         | 148 Stunden                  |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

The course presents the most relevant computer vision tasks and current solutions. It covers nonlinear diffusion, variational optimization, spectral clustering, image segmentation, optical flow, video segmentation, stereo reconstruction, camera calibration, structure from motion, recognition, and deep learning.

Examination achievement

See module level

Course achievement

See module level

Literature

current literature, as announced directly in lecture

Compulsory requirement

keine | none

Recommended requirement

Fundamental mathematical knowledge and programming skills (in C++ or Python) Basic knowledge in image processing and/or computer graphics concepts

Recommendation

Usually the course is offered every winter semester; as there might be rare exceptions in some years, it's marked as "irregularly"

| Name of module              | Number of module      |
|-----------------------------|-----------------------|
| Computer Vision             | 11LE13MO-1123_PO 2020 |
| course                      |                       |
| Computer Vision - Exercises |                       |
| Event type                  | Number                |
| excercise course            | 11LE13Ü-1123          |
| Organizer                   |                       |

Department of Computer Science, Pattern Recognition and Image Processing

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 30 Stunden                   |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

The exercises consist of programming assignments (usually in C/C++), where students learn to implement the most important techniques presented in the lectures.

**Examination achievement** 

See module level

Course achievement

See module level

↑

Compulsory requirement

| Name of module                                        | Number of module      |
|-------------------------------------------------------|-----------------------|
| Concurrency, Theory and Practice                      | 11LE13MO-1225_PO 2020 |
| Responsible                                           |                       |
| Prof. Dr. Peter Thiemann                              |                       |
| Organizer                                             |                       |
| Department of Computer Science, Programming Languages |                       |
| Faculty                                               | ·                     |
| Faculty of Engineering                                |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden                     |
| Hours of week             | 4.0                             |
| Recommended semester      | 1                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement  |
|-------------------------|
| keine                   |
| Recommended requirement |
| keie                    |

| Assigned Courses                 |                  |                    |      |     |                        |
|----------------------------------|------------------|--------------------|------|-----|------------------------|
| Name                             | Туре             | C/E                | ECTS | HoW | Workload               |
| Concurrency, Theory and Practice | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den/hours |
| Concurrency, Theory and Practice | excercise course | Core elec-<br>tive |      | 2.0 |                        |

# Qualification

Knowledge of issues arising in writing correct concurrent programs; typical problems like race conditions, deadlocks, and techniques to address them; techniques for modeling and analyzing concurrency programs: calculi for concurrency, dynamic and static analysis; concurrency patterns and primitives

Examination achievement

Klausur/written exam

Literature

The Art of Multiprocessor Programming (Herlihy, Shavit) Concurrency in Go (O'Reilly) Fundamentals of Session Types (Vasconcelos)

<sup>↑</sup> 

| Name of module                                        | Number of module      |  |  |
|-------------------------------------------------------|-----------------------|--|--|
| Concurrency, Theory and Practice                      | 11LE13MO-1225_PO 2020 |  |  |
| course                                                |                       |  |  |
| Concurrency, Theory and Practice                      |                       |  |  |
| Event type                                            | Number                |  |  |
| lecture course                                        | 11LE13V-1225          |  |  |
| Organizer                                             |                       |  |  |
| Department of Computer Science, Programming Languages |                       |  |  |

Department of Computer Science, Programming Languages

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden/hours               |
| Attendance                | 32 Stunden/hours                |
| Independent study         | 116 Stunden/hours               |
| Hours of week             | 2.0                             |
| Recommended semester      | 2                               |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

## Contents

A concurrent language; dataraces, deadlocks and their detection; concurrent programming patterns; specification of concurrent programs; concurrent datastructures; a concurrency calculus with types

**Examination achievement** 

See module level

Course achievement

See module level

Literature

The Art of Multiprocessor Programming (Herlihy, Shavit) Concurrency in Go (O'Reilly)

Fundamentals of Session Types (Vasconcelos)

further materials to be announced on the lecture webpage

Compulsory requirement

keine

Recommended requirement

keine

| Name of module                                        | Number of module      |  |  |
|-------------------------------------------------------|-----------------------|--|--|
| Concurrency, Theory and Practice                      | 11LE13MO-1225_PO 2020 |  |  |
| course                                                |                       |  |  |
| Concurrency, Theory and Practice                      |                       |  |  |
| Event type                                            | Number                |  |  |
| excercise course                                      | 11LE13Ü-1225          |  |  |
| Organizer                                             |                       |  |  |
| Department of Computer Science, Programming Languages |                       |  |  |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 32 Stunden/hours                |
| Hours of week             | 2.0                             |
| Recommended semester      | 2                               |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

| $\sim$ | ntents |  |
|--------|--------|--|
|        | ntente |  |
|        |        |  |

Extension, consolidation, and practical exploration of lecture contents

**Examination achievement** 

See module level

Course achievement

See module level

Compulsory requirement

|                                                                                              | U                     |  |
|----------------------------------------------------------------------------------------------|-----------------------|--|
| Name of module                                                                               | Number of module      |  |
| Cyber-Physikalische Systeme - Diskrete Modelle / Cyber-Physical Systems<br>– Discrete Models | 11LE13MO-2070_PO 2020 |  |
| Responsible                                                                                  | -                     |  |
| Prof. Dr. Andreas Podelski                                                                   |                       |  |
| Organizer                                                                                    |                       |  |
| Department of Computer Science, Software Engineering                                         |                       |  |
| Faculty                                                                                      |                       |  |
| Faculty of Engineering                                                                       |                       |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement  |  |
|-------------------------|--|
| keine   none            |  |
| Recommended requirement |  |

Grundlegende Kenntnisse in den Themenbereichen Rechnerarchitektur und Softwaretechnik / Softwareentwurf |

Basic knowledge in the areas of computer architecture and software engineering / software design

| Assigned Courses                                                                                              |                  |                    |      |     |                             |
|---------------------------------------------------------------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                                                                          | Туре             | C/E                | ECTS | HoW | Workload                    |
| Cyber-Physikalische Systeme – Diskrete<br>Modelle / Cyber-Physical Systems – Dis-<br>crete Models - Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 Stun-<br>den  <br>hours |
| Cyber-Physikalische Systeme – Diskrete<br>Modelle / Cyber-Physical Systems – Dis-<br>crete Models - Exercises | excercise course | Core elec-<br>tive |      | 1.0 |                             |

# Qualification

The course provides an introduction to discrete models of cyber-physical systems, their analysis and verification:

The students learn how to model cyber-physical systems as transition systems. Here, the main focus lies on software and hardware aspects of cyber-physical systems and on methods for modeling parallelism and communication.

The students learn how to express properties about such systems. The course covers different mechanisms to specify temporal properties including linear time properties and branching time properties such as LTL,

CTL, and CTL\* properties.

## Examination achievement

Written exam (usually 90 to 180 minutes)

If the number of participants is small (< 15), an oral examination may be held instead. The students will be informed in good time.

## Course achievement

Exercise sheets have to be completed and handed in on a regular basis. These will be scored and awarded with points.

To pass the course work (Studienleistung), you must obtain at least 50% of the exercise points. Also, every student must present his/her solution to an exercise in an exercise group at least once in the semester.

### Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Essential Lectures in Computer Science

Part of the specialization Cyber-Physical Systems in Master of Science Informatik/Computer Science bzw. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)

| Name of module                                                                                                                                                                                                              | Number of module                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Cyber-Physikalische Systeme - Diskrete Modelle / Cyber-Physical Systems<br>– Discrete Models                                                                                                                                | 11LE13MO-2070_PO 2020                         |
| course                                                                                                                                                                                                                      |                                               |
| Cyber-Physikalische Systeme – Diskrete Modelle / Cyber-Physical Systems                                                                                                                                                     | <ul> <li>Discrete Models - Lecture</li> </ul> |
| Event type                                                                                                                                                                                                                  | Number                                        |
| lecture course                                                                                                                                                                                                              | 11LE13V-2070                                  |
| Organizer                                                                                                                                                                                                                   |                                               |
| Department of Computer Science, Computer Architecture<br>Department of Computer Science, Programming Languages<br>Department of Computer Science, Software Engineering<br>Department of Computer Science, Operating Systems |                                               |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 45 Stunden   hours           |
| Independent study         | 120 Stunden   hours          |
| Hours of week             | 3.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

#### Contents

The course provides an introduction to discrete models of cyberphysical systems, their analysis and verification:

- The students learn how to model cyber-physical systems as transition systems. Here, the main focus lies on software and hardware aspects of cyber-physical systems and on methods for modeling parallelism and communication.
- Moreover, the students learn how to express properties about such systems. The course covers different mechanisms to specify temporal properties including linear time properties and branching time properties such as LTL, CTL, and CTL\* properties.
- Finally, the course demonstrates how to develop algorithms for checking whether these properties hold. After presenting algorithms for explicit state systems we introduce symbolic BDDbased algorithms which are able to tackle the well-known "state explosion problem". In addition, the course covers basic "Bounded Model Checking" (BMC) techniques which restrict the analysis to computation paths up to a certain length and reduce the verification problem to a Boolean Satisfiability problem.
- All necessary foundations for these algorithms such as fixed point theory, data structures like Binary Decision Diagrams (BDDs), and Satisfiability (SAT) solvers are introduced in the course as well.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

| Literature                                                                                                                                                                                                                                        |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Christel Baier, Joost-Pieter Katoen, Principles of Model Checking, MIT, 2008, ISBN 9780262026499</li> <li>B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, Systems and Software Verification, Springer, 2001, ISBN 3642074782</li> </ul> |  |  |
| <ul> <li>E. Clarke, O. Grumberg, D. Peled, "Model Checking", MIT Press 1999</li> <li>Kropf, Thomas, "Introduction to Formal Hardware Verification", Springer, 1999, ISBN 3-540-65445-3</li> </ul>                                                 |  |  |
| Compulsory requirement                                                                                                                                                                                                                            |  |  |
| keine   none                                                                                                                                                                                                                                      |  |  |
| Recommended requirement                                                                                                                                                                                                                           |  |  |
| Grundlegende Kenntnisse in den Themenbereichen Rechnerarchitektur und Softwaretechnik / Softwareent-<br>wurf                                                                                                                                      |  |  |
| Basic knowledge in the areas of computer architecture and software engineering / software design                                                                                                                                                  |  |  |
| $\uparrow$                                                                                                                                                                                                                                        |  |  |

| Name of module                                                                                                                                                                                                              | Number of module              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Cyber-Physikalische Systeme - Diskrete Modelle / Cyber-Physical Systems 11LE13MO-2070_PO                                                                                                                                    |                               |
| course                                                                                                                                                                                                                      |                               |
| Cyber-Physikalische Systeme – Diskrete Modelle / Cyber-Physical Systems                                                                                                                                                     | – Discrete Models - Exercises |
| Event type                                                                                                                                                                                                                  | Number                        |
| excercise course                                                                                                                                                                                                            | 11LE13Ü-2070                  |
| Organizer                                                                                                                                                                                                                   |                               |
| Department of Computer Science, Computer Architecture<br>Department of Computer Science, Programming Languages<br>Department of Computer Science, Software Engineering<br>Department of Computer Science, Operating Systems |                               |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 15 Stunden   hours           |
| Hours of week             | 1.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

| Contents |
|----------|
|----------|

The lecture is accompanied by exercises.

Students train themselves to write down things in a formally correct way.

**Examination achievement** 

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

## Compulsory requirement

 $\overline{\uparrow}$ 

| · · · · · · · · · · · · · · · · · · ·                |                          |
|------------------------------------------------------|--------------------------|
| Name of module                                       | Number of module         |
| Cyber-Physical Systems – Program Verification        | 11LE13MO-1207_v2_PO 2020 |
| Responsible                                          |                          |
| Prof. Dr. Andreas Podelski                           |                          |
| Organizer                                            |                          |
| Department of Computer Science, Software Engineering |                          |
| Faculty                                              |                          |
| Faculty of Engineering                               |                          |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 2                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

#### Compulsory requirement

keine | none

Recommended requirement

Basic concepts in logic (propositional logic, first-order logic), mathematics (sets, relations, functions, linear algebra), formal languages (regular expressions, automata).

| Assigned Courses                                                                                         |                  |                    |      |     |                             |
|----------------------------------------------------------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                                                                     | Туре             | C/E                | ECTS | HoW | Workload                    |
| Cyber-Physische Systeme - Programmve-<br>rifikation / Cyber-Physical Systems – Pro-<br>gram Verification | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Cyber-Physische Systeme - Programmve-<br>rifikation / Cyber-Physical Systems – Pro-<br>gram Verification | excercise course | Core elec-<br>tive |      | 2.0 |                             |

## Qualification

Often computers are used in embedded, networked, safety-critical applications. The cost of failure is high. The student learns the basic concepts, methods, and tools for ensuring that a system does not have bad behaviors. The student learns how to use propositional logic and first-order logic reasoning for specification, analysis, and verification. The student learns how to formally specify the correctness of a given program. In particular, correctness can be specified by an annotation of the program with a special kind of comments. The student learns how the correctness of the program can be reduced to the validity of a first-order logical formula and how the validity can be proven automatically by a new generation of powerful reasoning engines. The student also learns how verification can be done with static analysis methods, i.e., methods which have been developed originally in compiler optimization and which have been formalized by Patrick and Radhia Cousot's framework of abstract interpretation.

Examination achievement

Written exam (usually 90 to 180 minutes)

If the number of participants is small (< 15), an oral examination may be held instead. The students will be informed in good time.

Course achievement

Exercise sheets have to be completed and handed in on a regular basis. These will be scored and awarded with points.

To pass the course work (Studienleistung), you must obtain at least 50% of the exercise points. Also, every student must present his/her solution to an exercise in an exercise group at least once in the semester.

# Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                                                                                                                                                                                              | Number of module          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Cyber-Physical Systems – Program Verification                                                                                                                                                                               | 11LE13MO-1207_v2_PO 2020  |
| course                                                                                                                                                                                                                      |                           |
| Cyber-Physische Systeme - Programmverifikation / Cyber-Physical System                                                                                                                                                      | ms – Program Verification |
| Event type                                                                                                                                                                                                                  | Number                    |
| lecture course                                                                                                                                                                                                              | 11LE13V-1207_v2           |
| Organizer                                                                                                                                                                                                                   |                           |
| Department of Computer Science, Computer Architecture<br>Department of Computer Science, Programming Languages<br>Department of Computer Science, Software Engineering<br>Department of Computer Science, Operating Systems |                           |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 26 Stunden                   |
| Independent study         | 128 Stunden                  |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

In this lecture we introduce basic concepts, methods, and tools for ensuring that a system does not have bad behaviors. We start with an introduction to propositional logic and first-order logic reasoning. We establish a formal setting for the specification, analysis, and verification of behaviors of programs. We show how correctness can be specified by an annotation of the program with a special kind of comments. We show how the correctness of a program can be reduced to the validity of a logical formula. The validity can be proven automatically by a new generation of powerful reasoning engines. Finally, we connect verification with static analysis methods which have been developed originally in compiler optimization and which are formalized by Patrick and Radhia Cousot's framework of abstract interpretation. To give an example of a verification problem, we take device driver programs for Windows and Linux operating systems; such programs come with rules that specify the order of certain operations and file accesses. A violation of such a rule leads to system crash or deadlock, unexpected exceptions, and the failure of runtime checks. An example of a rule is that calls to lock and unlock must alternate (an attempt to re-acquire an acquired lock or release a released lock will cause a deadlock). We can formalize the correctness properties expressed by such a rules in the form of a temporal property (safety or liveness) or a finite automaton.

#### Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level
# Literature

Baier, C., Katoen, J. - Principles of Model Checking Almeida, J.B., Frade, M.J., Pinto, J.S., Melo de Sousa, S. - Rigorous Software Development - An Introduction to Program Verification

Compulsory requirement

keine | none

Recommended requirement

Basic concepts in logic (propositional logic, first-order logic), mathematics (sets, relations, functions, linear algebra), formal languages (regular expressions, automata).

| Name of module                                                                                                                                                                                                              | Number of module          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Cyber-Physical Systems – Program Verification                                                                                                                                                                               | 11LE13MO-1207_v2_PO 2020  |
| course                                                                                                                                                                                                                      |                           |
| Cyber-Physische Systeme - Programmverifikation / Cyber-Physical Syste                                                                                                                                                       | ms – Program Verification |
| Event type Number                                                                                                                                                                                                           |                           |
| excercise course                                                                                                                                                                                                            | 11LE13Ü-1207_v2           |
| Organizer                                                                                                                                                                                                                   |                           |
| Department of Computer Science, Computer Architecture<br>Department of Computer Science, Programming Languages<br>Department of Computer Science, Software Engineering<br>Department of Computer Science, Operating Systems |                           |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 26 Stunden                   |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

| ontents                              |  |
|--------------------------------------|--|
|                                      |  |
| xamination achievement               |  |
| iehe Modulebene  <br>ee module level |  |
| ourse achievement                    |  |
| iehe Modulebene  <br>ee module level |  |
| ompulsory requirement                |  |
|                                      |  |

 $\uparrow$ 

| Name of module                                        | Number of module      |
|-------------------------------------------------------|-----------------------|
| Debugging and Fuzzing                                 | 11LE13MO-1158_PO 2020 |
| Responsible                                           |                       |
| Prof. Dr. Armin Biere                                 |                       |
| Organizer                                             |                       |
| Department of Computer Science, Computer Architecture |                       |
| Faculty                                               |                       |
| Faculty of Engineering                                |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| keine   none                                                                                                                                                                                     |
| Recommended requirement                                                                                                                                                                          |
| Good programming experience necessary<br>Highly recommended: Advanced Programming Skills (in C, C++, Java, or Python)<br>Basic knowledge in Software Engineering, Algorithms and Data-Structures |

| Assigned Courses      |                  |                    |      |     |                             |
|-----------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                  | Туре             | C/E                | ECTS | HoW | Workload                    |
| Debugging and Fuzzing | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Debugging and Fuzzing | excercise course | Core elec-<br>tive |      | 2.0 |                             |

| Qualification                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The main goal is to understand debugging from a scientific perspective and learn how to apply advanced debugging techniques to real world system design mostly in the context of software engineering and in combination with modern fuzzing and testing techniques. |
| Examination achievement                                                                                                                                                                                                                                              |
| Written exam (usually 90 to 180 minutes)                                                                                                                                                                                                                             |

Course achievement

You have to complete and hand in your solutions for exercise sheets and perform experiments on a regular basis. These will be scored and awarded with points. To successfully complete the course work (Studienleistung), you need to have reached

at least 50% of the overall number of achievable points for the semester.

# Usability

Compulsory elective module for students of the study program

M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses

M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

| Name of module        | Number of module      |
|-----------------------|-----------------------|
| Debugging and Fuzzing | 11LE13MO-1158_PO 2020 |
| course                |                       |
| Debugging and Fuzzing |                       |
| Event type            | Number                |
| lecture course        | 11LE13V-1158_PO 2020  |
| Organizer             |                       |

Department of Computer Science, Computer Architecture

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 30                           |
| Independent study         | 120                          |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

We will discuss failures, tracking, contracts/assertions,delta-debugging, quick-check, symbolic debugging, coverage, automatic/unit/regression/combinatorial/model-based testing, data-races, deadlocks, sanitizers and also spend some time on fuzzing, including white/gray/black-box fuzzing, coverage, grammar-aware fuzzing, and symbolic execution.

## Examination achievement

See module level

## Course achievement

See module level

## Literature

↑

"Why Programs Fail", A. Zeller. "The Fuzzing Book", A. Zeller et.al.

Compulsory requirement

## Recommended requirement

Good programming experience necessary Highly recommende: Advanced Programming Skills (in C, C++, Java, or Python) Software Engineering, Algorithms and Data-Structures

| Name of module        | Number of module      |  |
|-----------------------|-----------------------|--|
| Debugging and Fuzzing | 11LE13MO-1158_PO 2020 |  |
| course                |                       |  |
| Debugging and Fuzzing |                       |  |
| Event type            | Number                |  |
| excercise course      | 11LE13Ü-1158_PO 2020  |  |
| Organizer             |                       |  |

Department of Computer Science, Computer Architecture

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 30                           |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

Using the acquired debugging techniques in exercises on paper and applying debugging and fuzzing tools to real complex code from automated reasoning, electronic design automation or compilers.

**Examination achievement** 

See module level

Course achievement

See module level

↑

Compulsory requirement

| Name of module                                                                | Number of module      |  |
|-------------------------------------------------------------------------------|-----------------------|--|
| Digital Health (DH)                                                           | 11LE13MO-1160_PO 2020 |  |
| Responsible                                                                   |                       |  |
| Prof. Dr. Oliver Amft                                                         |                       |  |
| Organizer                                                                     |                       |  |
| Department of Computer Science, Professorship in Intelligent Embedded Systems |                       |  |
| Faculty                                                                       |                       |  |
| Faculty of Engineering                                                        |                       |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 hours                    |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement                                                        |
|-------------------------------------------------------------------------------|
| none                                                                          |
|                                                                               |
| Recommended requirement                                                       |
| Basic timeseries analysis methods, basic programming skills, coding in Python |

| Assigned Courses    |                  |                    |      |     |           |
|---------------------|------------------|--------------------|------|-----|-----------|
| Name                | Туре             | C/E                | ECTS | HoW | Workload  |
| Digital Health (DH) | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 hours |
| Digital Health (DH) | excercise course | Compul-<br>sory    |      | 2.0 |           |

| Qualification |  |
|---------------|--|
|---------------|--|

\* Understand the data sources and modalities in digital medicine and the processes of data integration in clinical information systems and DGAs

- \* Understand the German DGA regulation and issues relating to data privacy
- \* Apply ubiquitous technology (ambient, mobile, wearable, implantable) for digital health
- \* Apply context recognition and personalisation methods to qualify ubiquitous system data
- \* Apply data-based privacy preserving techniques (obfuscation)
- \* Design and implement digital biomarkers based on multimodal data
- \* Design and apply digital health twins and clinical data modelling
- \* Design medical decision support systems based on multimodal data

Examination achievement

mündliche Prüfung (i.d.R. 30 oder 45 Minuten) | Oral exam (usually 30 or 45 minutes)

If there are too many students for a reasonably organized oral exam, it will be held as a written exam instead, announced well in advance.

Course achievement

written composition

Reports on exercises to be submitted

Literature

Up-to-date literature recommendations are provided during the lectures.

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science OR in Microsystems Engineering Concentrations Area Biomedical Engineering
- M.Sc. Microsystems Engineering (PO 2021), Concentration Biomedical Engineering
- M.Sc.Mikrosystemtechnik (PO 2021), Vertiefung Biomedizinische Technik

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

and

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

| Name of module      | Number of module      |
|---------------------|-----------------------|
| Digital Health (DH) | 11LE13MO-1160_PO 2020 |
| course              |                       |
| Digital Health (DH) |                       |
| Event type          | Number                |
| lecture course      | 11LE13V-1160_PO 2020  |
| Organizer           |                       |

Department of Computer Science, Professorship in Intelligent Embedded Systems

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 hours                    |
| Attendance                | 32 hours                     |
| Independent study         | 116 hours                    |
| Hours of week             | 2.0                          |
| Recommended semester      | 1                            |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

Digital health is a branch of digital medicine that integrates and leverages multisource and multimodal data for medical knowledge extraction and decision support across a wide range of preventive, diagnostic, and therapeutic applications. The course starts by introducing the basic properties of medically relevant data sources and their different modalities. The course introduces the medical benefits of using ubiquitous technologies for data collection, in particular, between hospital visits. The process of medical data integration in clinical information systems and in digital health applications ("Digitale Gesundheitsanwendungen", DGA) is discussed. The German DGA regulations and their consequences are introduced, in particular relating to digital health application qualification and data privacy. Privacy preserving techniques are discussed and applied. Subsequently, data interpretation in telemedicine and digital biomarker design are analysed regarding context recognition and personalisation methods and algorithms. Decision support systems are dissected regarding their components and data analysis algorithms. Finally, the concept, realisation, and application of digital health twins in medicine is developed. The exercises will include practical experiments and implementation tasks, e.g. smartphone apps, 3D digital twin modelling, and data analysis for decision support.

#### Examination achievement

see module level

## Course achievement

see module level

Literature

Up-to-date literature recommendations are provided during the lectures.

## Compulsory requirement

None

Recommended requirement

Basic timeseries analysis methods, basic programming skills, coding in Python

 $\uparrow$ 

| Name of module      | Number of module      |
|---------------------|-----------------------|
| Digital Health (DH) | 11LE13MO-1160_PO 2020 |
| course              |                       |
| Digital Health (DH) |                       |
| Event type          | Number                |
| excercise course    | 11LE13Ü-1160_PO 2020  |
| Organizer           |                       |

Department of Computer Science, Professorship in Intelligent Embedded Systems

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 32 hours                     |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Compulsory                   |
| Language                  | english                      |

## Contents

Students will investigate concrete data science methods related to medical data, including context recognition, data interpretation and abstraction.

Examination achievement

see module level

Course achievement

see module level

↑

Compulsory requirement

| Name of module                                                                                                         | Number of module      |
|------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Echtzeitbetriebssysteme und Worst-Case-Execution-Times / Real-Time<br>Operating Systems and Worst-Case Execution Times | 11LE13MO-1240_PO 2020 |
| Responsible                                                                                                            |                       |
| Prof. Dr. Christoph Scholl                                                                                             |                       |
| Organizer                                                                                                              |                       |
| Department of Computer Science, Operating Systems                                                                      |                       |
| Faculty                                                                                                                |                       |
| Faculty of Engineering                                                                                                 |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 2                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement                                                                                         |
|----------------------------------------------------------------------------------------------------------------|
| keine   none                                                                                                   |
| Recommended requirement                                                                                        |
| Knowledge in computer architecture / Computer Architecture and software technology / Software Enginee-<br>ring |

| Assigned Courses                                                                                                           |                  |                    |      |     |           |
|----------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|------|-----|-----------|
| Name                                                                                                                       | Туре             | C/E                | ECTS | HoW | Workload  |
| Echtzeitbetriebssysteme und Worst-Case-<br>Execution-Times / Real-Time Operating<br>Systems and Worst-Case Execution Times | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 hours |
| Echtzeitbetriebssysteme and Worst-Case-<br>Execution-Times/ Real-Time Operating<br>Systems and Worst-Case Execution Times  | excercise course | Core elec-<br>tive |      | 1.0 |           |

## Qualification

The students are proficient in the basic methods for real-time operating systems. In particular, they know the essential differences between standard operating systems and real-time operating systems for embedded systems with respect to both requirements and implementation concepts (especially in the area of scheduling). The students have knowledge of the most important functions of real-time operating systems as well as programming experience with real-time systems.

## Examination achievement

Klausur (i.d.R. 90 bis 180 Minuten) | Written exam (usually 90 to 180 minutes)

(Wenn die Teilnehmerzahl sehr klein ist, kann stattdessen eine mündliche Prüfung durchgeführt werden. Die Studierenden werden rechtzeitig informiert. |

If number of participants is small, might be changed to oral exam instead. Students will be notified in good time.)

Course achievement

keine | none

Usability

As compulsory elective in

- M.Sc. Informatik / Computer Science in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) in Elective Courses in Computer Science

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

ſ

| Name of module                                                                                                         | Number of module      |  |  |
|------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
| Echtzeitbetriebssysteme und Worst-Case-Execution-Times / Real-Time<br>Operating Systems and Worst-Case Execution Times | 11LE13MO-1240_PO 2020 |  |  |
| course                                                                                                                 |                       |  |  |
| Echtzeitbetriebssysteme und Worst-Case-Execution-Times / Real-Time Operating Systems and Worst-Case Execution Times    |                       |  |  |
| Event type                                                                                                             | Number                |  |  |
| lecture course                                                                                                         | 11LE13V-1240          |  |  |
| Organizer                                                                                                              |                       |  |  |
| Department of Computer Science, Computer Architecture<br>Department of Computer Science, Operating Systems             |                       |  |  |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 hours                       |
| Attendance                | 64 Stunden   hours              |
| Independent study         | 116 Stunden   hours             |
| Hours of week             | 3.0                             |
| Recommended semester      | 2                               |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

# Contents

After a brief review of standard operating systems and the hardware requirements for the implementation of operating systems the lecture deals with operating systems for embedded systems and the question how real-time requirements can be fulfilled. In order to answer this question the lecture looks into methods which compute upper bounds to the run time of processes ("worst case execution times") and into scheduling methods which guarantee meeting certain deadlines under the condition that the run times do not exceed given worst case execution times. Various scheduling approaches are classified with respect to their application area and analyzed with respect to their quality and cost. Moreover, the lecture looks into basic concepts like synchronization and communication of several processes, shared resources, mutual exclusion etc. together with their role in the design of real-time operating systems.

Examination achievement

see module level

Course achievement

see module level

Literature

Will be announced at the beginning of the course.

## Compulsory requirement

keine | none

## Recommended requirement

Knowledge in computer architecture / Computer Architecture and software technology / Software Engineering

| Name of module                                                                                                         | Number of module      |  |  |
|------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
| Echtzeitbetriebssysteme und Worst-Case-Execution-Times / Real-Time<br>Operating Systems and Worst-Case Execution Times | 11LE13MO-1240_PO 2020 |  |  |
| course                                                                                                                 |                       |  |  |
| Echtzeitbetriebssysteme and Worst-Case-Execution-Times/ Real-Time Operating Systems and Worst-Case Execution Times     |                       |  |  |
| Event type                                                                                                             | Number                |  |  |
| excercise course                                                                                                       | 11LE13Ü-1240          |  |  |
| Organizer                                                                                                              |                       |  |  |
| Department of Computer Science, Computer Architecture                                                                  |                       |  |  |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 16 Stunden   hours              |
| Hours of week             | 1.0                             |
| Recommended semester      | 2                               |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

## Contents

Exercises are used to deepen the understanding of methods and algorithms introduced in the lectures by application to practical examples.

**Examination achievement** 

see module level

Course achievement

see module level

Compulsory requirement

| Name of module                                                   | Number of module      |
|------------------------------------------------------------------|-----------------------|
| Einführung in die Kryptographie / Introduction to Cryptography   | 11LE13MO-1401_PO 2020 |
| Responsible                                                      |                       |
| Prof. Dr. Christian Schindelhauer                                |                       |
| Organizer                                                        |                       |
| Department of Computer Science, Computer Networks and Telematics |                       |
| Faculty                                                          |                       |
| Faculty of Engineering                                           |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 2                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement  |
|-------------------------|
| keine   none            |
| Recommended requirement |
| keine   none            |

| Assigned Courses                                                           |                  |                    |      |     |                             |
|----------------------------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                                       | Туре             | C/E                | ECTS | HoW | Workload                    |
| Einführung in die Kryptographie/Introduc-<br>tion to Cryptography- Lecture | lecture course   | Core elec-<br>tive |      | 2.0 | 180 Stun-<br>den  <br>hours |
| Einführung in die Kryptographie/Introduc-<br>tion to Cryptography-Exercise | excercise course | Core elec-<br>tive |      | 2.0 |                             |

## Qualification

Students know the meaning of symmetric and asymmetric cryptographic methods and understand their fundamentals. They gain the ability to understand current scientific literature.

Examination achievement

Bei mehr als 10 Teilnehmern findet eine schriftliche Prüfung statt (Dauer zwischen 90 und 180 Minuten). Ansonsten findet eine mündliche Prüfung statt (Dauer 20 bis 30 Minuten).

In case there are more than 10 students there will be an written exam (duration between 90 and 180 minutes). Otherwise an oral exam will take place (duration 20 to 30 minutes).

| Course achievement                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| keine   none                                                                                                                                                                                                                                                                                                                                                                                                         |
| Usability                                                                                                                                                                                                                                                                                                                                                                                                            |
| As compulsory elective in <ul> <li>M.Sc. Informatik / Computer Science in Spezialvorlesung   Specialization Courses</li> <li>M.Sc. Embedded Systems Engineering (ESE) in Elective Courses in Computer Science</li> </ul> Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science                                                                                    |
| <ul> <li>resp. MSc Embedded Systems Engineering</li> <li>Wahlpflichtmodul für Studierende des Studiengangs</li> <li>B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik</li> <li>B.Sc. in Informatik (PO 2018)</li> <li>polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)</li> <li>M.Ed. Informatik (PO 2018)</li> <li>Master of Education Erweiterungsfach Informatik (PO 2021)</li> </ul> |
| $\uparrow$                                                                                                                                                                                                                                                                                                                                                                                                           |

| Name of module                                                        | Number of module      |  |
|-----------------------------------------------------------------------|-----------------------|--|
| Einführung in die Kryptographie / Introduction to Cryptography        | 11LE13MO-1401_PO 2020 |  |
| course                                                                |                       |  |
| Einführung in die Kryptographie/Introduction to Cryptography- Lecture |                       |  |
| Event type                                                            | Number                |  |
| lecture course                                                        | 11LE13V-1401          |  |
| Organizer                                                             |                       |  |
| Department of Computer Science, Computer Networks and Telematics-V    | /В                    |  |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Attendance                | 32 Stunden                      |
| Independent study         | 116 Stunden                     |
| Hours of week             | 2.0                             |
| Recommended semester      | 2                               |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

# Contents

Vorlesungsthemen:

- Symmetrische Verschlüsselung
- Asymmetrische Verschlüsselung
- kryptographische Protokolle
- One-Way-Funktionen
- One-Time-Pads
- Quantum Cryptography

## Lecture topics

- Symmetric-Key Cryptography
- Public-Key-Cryptography
- Cryptographic Protocols
- One-Way-Functions
- One-Time Pads
- Quantum Cryptography

## Examination achievement

Siehe Modulebene | See module level

## Course achievement

# Siehe Modulebene | See module level

## Literature

- Introduction to Cryptography, Principles and Applications, Hans Delfs, Helmut Knebel, Springer 2015
- Einführung in die Kryptographie, Johannes Buchmann, Springer, 2009

| Compulsory requirement  |  |
|-------------------------|--|
| keine   none            |  |
| Recommended requirement |  |
| keine   none            |  |

 $\uparrow$ 

| Name of module                                                        | Number of module      |  |
|-----------------------------------------------------------------------|-----------------------|--|
| Einführung in die Kryptographie / Introduction to Cryptography        | 11LE13MO-1401_PO 2020 |  |
| course                                                                |                       |  |
| Einführung in die Kryptographie/Introduction to Cryptography-Exercise |                       |  |
| Event type                                                            | Number                |  |
| excercise course                                                      | 11LE13Ü-1401          |  |
| Organizer                                                             |                       |  |
| Department of Computer Science, Computer Networks and Telemetics V    | 2                     |  |

Department of Computer Science, Computer Networks and Telematics-VB

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 32 Stunden                      |
| Hours of week             | 2.0                             |
| Recommended semester      | 2                               |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

## Contents

Übung:

- Analyse der Sicherheit kryptographischer Verfahren
- Algorithmen zur Berechnung
- Analyse kryptographischer Protokolle
- Anwendung von Verschlüsselungsverfahren

↑

Exercise:

- Analysis of the security of cryptographic methods
- Algorithms for the computation
- Analysis of cryptographic protocols
- Using encryption methods

## Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

# Compulsory requirement

| ,                                                                                                                      |                      |
|------------------------------------------------------------------------------------------------------------------------|----------------------|
| Name of module                                                                                                         | Number of module     |
| Einführung in Embedded Systems / Introduction to Embedded Systems                                                      | 11LE13MO-910_PO 2020 |
| Responsible                                                                                                            | ·                    |
| Prof. Dr. Oliver Amft<br>Prof. Dr. Christoph Scholl                                                                    |                      |
| Organizer                                                                                                              |                      |
| Department of Computer Science, Operating Systems<br>Department of Computer Science, Professorship in Embedded Systems |                      |
| Faculty                                                                                                                |                      |
| Faculty of Engineering                                                                                                 |                      |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 3                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------|
| keine   none                                                                                                          |
| Recommended requirement                                                                                               |
| Basic knowledge in the field of technical informatics, analog and digital circuits, programming knowledge in C / C ++ |

| Assigned Courses                                                                   |                  |                 |      |     |                             |
|------------------------------------------------------------------------------------|------------------|-----------------|------|-----|-----------------------------|
| Name                                                                               | Туре             | C/E             | ECTS | HoW | Workload                    |
| Einführung in Embedded Systems / Intro-<br>duction to Embedded Systems - Lecture   | lecture course   | Compul-<br>sory | 6.0  | 3.0 | 180 Stun-<br>den  <br>hours |
| Einführung in Embedded Systems / Intro-<br>duction to Embedded Systems - Exercises | excercise course | Compul-<br>sory |      | 1.0 |                             |

## Qualification

Die Studierenden verstehen die spezifischen Eigenschaften eingebetteter Systeme, ihre Architektur und Komponenten, ihre Hardware- und Softwareschnittstelle, die Kommunikation zwischen Komponenten, grundlegende Analog-Digital-Analog-Umwandlungsmethoden, stromsparende Designs und Spezifikationstechniken. Sie sind in der Lage eingebettete Systeme mit VHDL, Zustandsdiagrammen und Petri-Netzen zu spezifizieren sowie Eigenschaften des modellierten Systems anzugeben und zu diskutieren und grundlegende Programme in C für eine eingebettete Plattform zu schreiben.

Students understand the specific properties of embedded systems, their architecture and components, their hardware and software interface, the communication between components, basic analog-digital-analog con-

version methods, low-power designs and specification techniques. They will be able to specify embedded systems with VHDL, statechart and petri-nets and reason about properties of the modeled system, and write basic programs in C for an embedded platform.

Examination achievement

Klausur (i.d.R. 90 bis 180 Minuten) | Written exam (usually 90 to 180 minutes)

Course achievement

Es gibt Übungsaufgaben im regelmäßigen Rhythmus, die bearbeitet und abgegeben werden müssen. Diese werden korrigiert und mit Punkten bewertet. Die Studienleistung ist bestanden, wenn mindestens 50% der Gesamtpunkte im Semester erreicht sind.

Exercise sheets have to be completed and handed in on a regular basis. These will be scored and awarded with points. The Studienleistung counts as passed if

at least 50% of the overall number of achievable points for the semester has been reached.

Recommendation

The lecture will be held in English (there are some recordings available in German from previous semesters).

The exercises will be offered in German as well as in English.

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) in Essential Lectures in Computer Science

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Pflichtmodul für Studierende des Studiengangs

B.Sc. in Embedded Systems Engineering (PO 2018)

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)
- Bachelor of Science in Mikrosystemtechnik (PO 2018), im Wahlpflichtbereich, Bereich Mikrosystemtechnik

| Name of module                                                                                                         | Number of module     |
|------------------------------------------------------------------------------------------------------------------------|----------------------|
| Einführung in Embedded Systems / Introduction to Embedded Systems                                                      | 11LE13MO-910_PO 2020 |
| course                                                                                                                 |                      |
| Einführung in Embedded Systems / Introduction to Embedded Systems - Lecture                                            |                      |
| Event type                                                                                                             | Number               |
| lecture course                                                                                                         | 11LE13V-910          |
| Organizer                                                                                                              |                      |
| Department of Computer Science, Operating Systems<br>Department of Computer Science, Professorship in Embedded Systems |                      |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 45 Stunden   hours           |
| Independent study         | 120 Stunden   hours          |
| Hours of week             | 3.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Compulsory                   |
| Languages                 | german, english              |

# Contents

Eingebettete Systeme gelten als die Schlüsselanwendung der Informationstechnologie in den kommenden Jahren und sind, wie der Name bereits andeutet, Systeme, bei denen Informationsverarbeitung in eine Umgebung eingebettet ist und dort komplexe Regelungs-, Steuerungs- oder Datenverarbeitungsaufgaben übernimmt.

Die Vorlesung beschäftigt sich mit grundlegenden Konzepten für Modellierung und Entwurf Eingebetteter Systeme. Sie behandelt u.a. Spezifikationssprachen und Methoden für Eingebettete Systeme (wie z.B. Statecharts, Petrinetze, VHDL), Abbildung von Spezifikationen auf Prozesse, Hardware Eingebetteter Systeme sowie Hardware-/Software-Codesign.

Es wird auf die Bauelemente eines Eingebetteten Systems eingegangen (z.B. Prozessoren, AD-/DA-Wandler, Sensoren, Sensorschnittstellen, Speicher) und es werden Methoden zum Entwurf und zur Optimierung der zugehörigen Schaltungen bezüglich Geschwindigkeit, Energieverbrauch und Testbarkeit vorgestellt.

Embedded Systems are considered the key application in information technology for the years to come. As the name suggests, they are systems embedding information processing into an environment, where complex control or data processing tasks are executed.

The lecture deals with the basic concepts for modelling and designing embedded systems. Among others it covers specification languages and methods for embedded systems (such as statecharts, petri nets, VHDL), the mapping of specifications on processes, hardware of Embedded Systems as well as hardware/software codesign.

It addresses the construction elements of an embedded system (e.g. processors, AD/DA converters, sensors, sensor interfaces, memory devices) and presents methods for the design and optimization of the associated circuits with respect to speed, energy consumption and testability.

Examination achievement

Siehe Modulebene | See module level

| Course achievement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| Siehe Modulebene  <br>See module level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                            |  |
| Literature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                            |  |
| <ol> <li>Marwedel, P.: Embedded System Design. Springer-Verlag New York, Inc</li> <li>Marwedel, P. ; Wehmayer, L.: Eingebettete Systeme. Springer-Verlag Be</li> <li>Ritter, J. ; Molitor, P.: VHDL - Eine Einführung. Pearson Studium, 2004.</li> <li>Chang, K. C.: Digital Design and Modeling with VHDL and Synthesis. IEE<br/>1996.</li> <li>Teich, J. ; Haubelt, C.: Digitale Hardware/Software-Systeme. Berlin : Spri</li> <li>Baker, R. J.; Li, H. W.; Boyce, D. E.: CMOS Circuit Design, Layout, and S<br/>on Microelectronic Systems, 1998.</li> <li>Rabaey, J. M.; Chandrakasan, A. P.; Nikolic, B.: Digital Integrated Circuits</li> <li>Tietze, U.; Schenk, C.: Halbleiter Schaltungstechnik. Springer-Verlag, 20</li> <li>Weste, N.; Eshraghian, K.: Principles of CMOS VLSI Design; A Systems<br/>1993.</li> </ol> | rlin, 2007.<br>EE Computer Society Press,<br>inger-Verlag Berlin, 2007.<br>Simulation. IEEE Press Series<br>s. Prentice-Hall, 2003.<br>02. |  |
| Compulsory requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                            |  |
| keine   none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                            |  |
| Recommended requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                            |  |
| Grundkennnisse im Bereich Technische Informatik, analoge und digitale Schnisse in C / C++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | naltkreise, Programmierkennt-                                                                                                              |  |

Basic knowledge in the field of technical informatics, analog and digital circuits, programming knowledge in C / C ++

| ,                                                                                                                      |                      |
|------------------------------------------------------------------------------------------------------------------------|----------------------|
| Name of module                                                                                                         | Number of module     |
| Einführung in Embedded Systems / Introduction to Embedded Systems                                                      | 11LE13MO-910_PO 2020 |
| course                                                                                                                 |                      |
| Einführung in Embedded Systems / Introduction to Embedded Systems - Exercises                                          |                      |
| Event type                                                                                                             | Number               |
| excercise course                                                                                                       | 11LE13Ü-910          |
| Organizer                                                                                                              |                      |
| Department of Computer Science, Operating Systems<br>Department of Computer Science, Professorship in Embedded Systems |                      |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 15 Stunden   hours           |
| Hours of week             | 1.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Compulsory                   |
| Languages                 | german, english              |

## Contents

Die Übungen bestehen aus theoretischen Aufgaben und Programmieraufgaben, um die Methoden und Konzepte der Vorlesung in praktischen Anwendungen einzusetzen.

The exercises consist of theoretical assignments and programming assignments, to apply the methods and concepts from the lecture.

## Examination achievement

Siehe Modulebene | See module level

## Course achievement

Siehe Modulebene | See module level

## Compulsory requirement

| Name of module Number of n                                                    |                       |  |
|-------------------------------------------------------------------------------|-----------------------|--|
| Embedded Computing Entrepreneurship (2ES)                                     | 11LE13MO-1404_PO 2020 |  |
| Responsible                                                                   | ·                     |  |
| Prof. Dr. Oliver Amft                                                         |                       |  |
| Organizer                                                                     |                       |  |
| Department of Computer Science, Professorship in Intelligent Embedded Systems |                       |  |
| Faculty                                                                       |                       |  |
| Faculty of Engineering                                                        |                       |  |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden / Hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 2                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement  |
|-------------------------|
| keine   none            |
| Recommended requirement |
| keine   none            |

| Assigned Courses                          |                  |                    |      |     |                             |
|-------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                      | Туре             | C/E                | ECTS | HoW | Workload                    |
| Embedded Computing Entrepreneurship (2ES) | lecture course   | Core elec-<br>tive | 6.0  | 1.0 | 180 Stun-<br>den /<br>Hours |
| Embedded Computing Entrepreneurship (2ES) | seminar          | Core elec-<br>tive |      | 1.0 |                             |
| Embedded Computing Entrepreneurship (2ES) | excercise course | Core elec-<br>tive |      | 2.0 |                             |

| Qualification                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>* Conceptualise and design embedded sensor systems along a specific application.</li> <li>* Develop and demonstrate key components of embedded sensor systems, including signal and pattern<br/>analysis and recognition algorithms.</li> <li>* Develop a basic market analysis and business plan.</li> <li>* Implement an agile development process.</li> </ul> |
| Examination achievement                                                                                                                                                                                                                                                                                                                                                   |
| Presentation followed by an oral examination<br>(10 minutes per person, total duration depends on group size)                                                                                                                                                                                                                                                             |

## Course achievement

Regular attendance of the course (seminar and exercise) according to §13 (2) of the General Examination Regulations for the Bachelor of Science/Master of Science, as otherwise the required group work and scientific discussion is not possible.

Further elements of the course work are the creation of demonstrators or software as well as a written elaboration/protocol.

## Usability

Compulsory elective module for students of the study program

- M.Sc. Microsystems Engineering (PO 2021), Concentration Circuits and Systems
- M.Sc.Mikrosystemtechnik (PO 2021), Vertiefung Schaltungen und Systeme
- M.Sc. Embedded Systems Engineering (PO 2021), Concentration Circuits and Systems or Concentration Biomedical Engineering OR Elective Courses in Computer Science
- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

and

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

| Name of module                            | Number of module      |
|-------------------------------------------|-----------------------|
| Embedded Computing Entrepreneurship (2ES) | 11LE13MO-1404_PO 2020 |
| course                                    |                       |
| Embedded Computing Entrepreneurship (2ES) |                       |
| Event type                                | Number                |
| lecture course                            | 11LE13V-1404_PO 2020  |
| Organizer                                 |                       |

Department of Computer Science, Professorship in Intelligent Embedded Systems

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden / Hours             |
| Attendance                | 16 Stunden / Hours              |
| Independent study         | 116 Stunden / Hours             |
| Hours of week             | 1.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

# Contents

The course combines technical and business-related lectures on embedded sensor systems with a practical system development project using agile development methods. Students will organise in groups and define together with their advisor(s) goals for the technical development, market analysis, etc. Student groups can enter their projects for an award of the VDE.

**Examination achievement** 

see module details

Course achievement

see module details

Literature

Relevant literature will be provided during the lectures and consultations.

Compulsory requirement

None

Recommended requirement

Basic pattern recognition methods; basic programming skills

| Name of module                            | Number of module      |
|-------------------------------------------|-----------------------|
| Embedded Computing Entrepreneurship (2ES) | 11LE13MO-1404_PO 2020 |
| course                                    |                       |
| Embedded Computing Entrepreneurship (2ES) |                       |
| Event type                                | Number                |
| seminar                                   | 11LE13S-1404_PO 2020  |
| Organizer                                 |                       |

Department of Computer Science, Professorship in Intelligent Embedded Systems

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 16 Stunden / Hours              |
| Hours of week             | 1.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

| Contents                |
|-------------------------|
|                         |
| Examination achievement |
| see module details      |
| Course achievement      |
| see module details      |
| Compulsory requirement  |
|                         |

 $\uparrow$ 

| Name of module                            | Number of module      |
|-------------------------------------------|-----------------------|
| Embedded Computing Entrepreneurship (2ES) | 11LE13MO-1404_PO 2020 |
| course                                    |                       |
| Embedded Computing Entrepreneurship (2ES) |                       |
| Event type                                | Number                |
| excercise course                          | 11LE13Ü-1404_PO 2020  |
| Organizer                                 |                       |

Department of Computer Science, Professorship in Intelligent Embedded Systems

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 32 Stunden / Hours              |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |

| Contents                |
|-------------------------|
|                         |
| Examination achievement |
| see module details      |
| Course achievement      |
| see module details      |
| Compulsory requirement  |
|                         |

⊥ ↑

| Name of module                                                    | Number of module      |
|-------------------------------------------------------------------|-----------------------|
| Foundations of Deep Learning                                      | 11LE13MO-1145_PO 2020 |
| Responsible                                                       | ·                     |
| Prof. Dr. Frank Roman Hutter                                      |                       |
| Organizer                                                         |                       |
| Department of Computer Science, Professorship in Machine Learning |                       |
| Faculty                                                           |                       |
| Faculty of Engineering                                            |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  |                              |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement                           |
|--------------------------------------------------|
| none                                             |
| Recommended requirement                          |
| Knowledge of linear algebra and machine learning |

| Assigned Courses             |                  |                    |      |     |                  |
|------------------------------|------------------|--------------------|------|-----|------------------|
| Name                         | Туре             | C/E                | ECTS | HoW | Workload         |
| Foundations of Deep Learning | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 Stun-<br>den |
| Foundations of Deep Learning | excercise course | Core elec-<br>tive |      |     |                  |

## Qualification

Foundations of Deep Learning, as covered in the book "Deep Learning" by Goodfellow, Bengio, and Courville.

Examination achievement

Written exam (usually 90 to 180 minutes)

If the number of participants is small, an oral examination (usually 30 or 45 minutes) may be held instead. The students will be informed in good time.

Course achievement

Exercise sheets have to be completed and handed in on a regular basis. These will be scored and awarded with points. To successfully complete the course work (Studienleistung), you need to have reached at least 50% of the overall number of achievable points for the semester.

# Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)
- ↑

| Name of module                                          | Number of module      |
|---------------------------------------------------------|-----------------------|
| Foundations of Deep Learning                            | 11LE13MO-1145_PO 2020 |
| course                                                  |                       |
| Foundations of Deep Learning                            |                       |
| Event type                                              | Number                |
| lecture course                                          | 11LE13V-1145          |
| Organizer                                               |                       |
| Description of Community Options - Desferred while in M |                       |

Department of Computer Science, Professorship in Machine Learning

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden                     |
| Hours of week             | 3.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

# Contents

In this course, we will cover the Foundations of Deep Learning, primarily using the book "Deep Learning" by Goodfellow, Bengio, and Courville.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

Compulsory requirement

**Recommended requirement** 

Knowledge of linear algebra and machine learning

| Name of module               | Number of module      |
|------------------------------|-----------------------|
| Foundations of Deep Learning | 11LE13MO-1145_PO 2020 |
| course                       |                       |
| Foundations of Deep Learning |                       |
| Event type                   | Number                |
| excercise course             | 11LE13Ü-1145          |
| Organizer                    |                       |

Department of Computer Science, Professorship in Machine Learning

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Hours of week             |                              |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

| Contents                               |
|----------------------------------------|
|                                        |
| Examination achievement                |
| Siehe Modulebene  <br>See module level |
| Course achievement                     |
| Siehe Modulebene  <br>See module level |
| Compulsory requirement                 |
|                                        |

 $\uparrow$ 

| Name of module                                        | Number of module      |  |
|-------------------------------------------------------|-----------------------|--|
| Funktionale Programmierung / Functional Programming   | 11LE13MO-1510_PO 2020 |  |
| Responsible                                           |                       |  |
| Prof. Dr. Peter Thiemann                              |                       |  |
| Organizer                                             |                       |  |
| Department of Computer Science, Programming Languages |                       |  |
| Faculty                                               |                       |  |
| Faculty of Engineering                                |                       |  |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 1                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| keine   none                                                                                                                                                                                        |
| Recommended requirement                                                                                                                                                                             |
| Spaß am Programmieren und am Lernen und Anwenden neuer Programmierkonzepte und -sprachen.<br>Weiterhin empfehlenswert:<br>Einführung in die Programmierung erfolgreich absolviert<br>Eigener Laptop |
| Interest in learning and applying new programming concepts and languages.<br>Also beneficial:<br>Introduction to programming successfully completed<br>Own laptop                                   |

| Assigned Courses                                                   |                  |                    |      |     |                  |  |
|--------------------------------------------------------------------|------------------|--------------------|------|-----|------------------|--|
| Name                                                               | Туре             | C/E                | ECTS | HoW | Workload         |  |
| Funktionale Programmierung / Functional<br>Programming - Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 Stun-<br>den |  |
| Funktionale Programmierung / Functional<br>Programming - Exercises | excercise course | Core elec-<br>tive |      | 1.0 |                  |  |

# Contents

This course conveys fundamental concepts of functional programming using the programming language Haskell
# Qualification

Development of a non-procedural view on algorithms and data structures, confident handling of higher-order functions and data, knowledge and ability to apply fundamental functional programming techniques, know-ledge of advanced programming concepts, ability to develop medium-size functional programs independently.

Examination achievement

Klausur (i.d.R. 90 bis 180 Minuten) | Written exam (usually 90 to 180 minutes)

(Wenn die Teilnehmerzahl < 20 ist, kann stattdessen eine mündliche Prüfung durchgeführt werden. Die Studierenden werden rechtzeitig informiert. |

If number of participants is < 20, might be changed to oral exam instead. Students will be notified in good time.)

Course achievement

keine | none

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

ſ

| Name of module                                                                                                | Number of module      |  |
|---------------------------------------------------------------------------------------------------------------|-----------------------|--|
| Funktionale Programmierung / Functional Programming                                                           | 11LE13MO-1510_PO 2020 |  |
| course                                                                                                        |                       |  |
| Funktionale Programmierung / Functional Programming - Lecture                                                 |                       |  |
| Event type                                                                                                    | Number                |  |
| lecture course                                                                                                | 11LE13V-1510          |  |
| Organizer                                                                                                     |                       |  |
| Department of Computer Science, Programming Languages<br>Department of Computer Science, Software Engineering |                       |  |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden                     |
| Attendance                | 39 Stunden                      |
| Independent study         | 128 Stunden                     |
| Hours of week             | 3.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

# Contents

In diesem Kurs werden grundlegende bis fortgeschrittene Konzepte der funktionalen Programmierung anhand der Programmiersprache Haskell vermittelt.

Behandelte Themen:

- Definition von Funktionen, Patternmatching und Funktionen höherer Ordnung
- Typen und Typklassen
- Algebraische Datentypen
- Funktionale Datenstrukturen
- Applicative Parser
- Monaden und Monadentransformer
- Arrows
- Verifikation von funktionalen Programmen
- Monadische Ein/Ausgabe und Stream Ein/Ausgabe

This course covers foundational and some advanced concepts of functional programming using the programming language Haskell. The list of topics includes

- Definition of functions, pattern matching, and higher-order functions
- Types and type classes
- Algebraic datatypes
- Functional datastructures
- I/O, monads, and monad transformers
- Parsers and applicatives
- Arrows
- Verification of functional programs
- Generic programming with algebras

| Examination achievement                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Siehe Modulebene  <br>See module level                                                                                                                                                                        |
| Course achievement                                                                                                                                                                                            |
| Siehe Modulebene  <br>See module level                                                                                                                                                                        |
| Literature                                                                                                                                                                                                    |
| Grundlage für das erste Drittel der Vorlesung ist das Lehrbuch Programming in Haskell von Graham Hutton, welches auch in der TF-Bibliothek steht.<br>Stephen Diehl's WHAT I WISH I KNEW WHEN LEARNING HASKELL |
| The book Programming in Haskell by Graham Hutton is the basis for the first 30% of the lecture. This book is available in the TF-library.<br>Stephen Diehl's WHAT I WISH I KNEW WHEN LEARNING HASKELL         |
| Compulsory requirement                                                                                                                                                                                        |
| keine   none                                                                                                                                                                                                  |
| Recommended requirement                                                                                                                                                                                       |
| Spaß am Programmieren und am Lernen und Anwenden neuer Programmierkonzepte und -sprachen.<br>Weiterhin empfehlenswert:<br>Einführung in die Programmierung erfolgreich absolviert<br>Eigener Laptop           |
| I                                                                                                                                                                                                             |
| Interest in learning and applying new programming concepts and languages.<br>Also beneficial:<br>Introduction to programming successfully completed<br>Own laptop<br>↑                                        |
| 1                                                                                                                                                                                                             |

| Name of module                                                  | Number of module      |  |
|-----------------------------------------------------------------|-----------------------|--|
| Funktionale Programmierung / Functional Programming             | 11LE13MO-1510_PO 2020 |  |
| course                                                          |                       |  |
| Funktionale Programmierung / Functional Programming - Exercises |                       |  |
| Event type                                                      | Number                |  |
| excercise course                                                | 11LE13Ü-1510          |  |
| Organizer                                                       |                       |  |
| Department of Computer Science, Programming Languages           |                       |  |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 13 Stunden                      |
| Hours of week             | 1.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

#### Contents

In den Übungen lernen die Studierenden anhand von Beispielszenarien, die Prinzipien und Methoden aus den Vorlesungen anzuwenden.

In the exercises, students will learn through example scenarios to apply the principles and methods from the lectures.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

# Compulsory requirement

| · ·                                                                           |                       |
|-------------------------------------------------------------------------------|-----------------------|
| Name of module                                                                | Number of module      |
| Grundlagen von Programmiersprachen / Essentials of Programming Lan-<br>guages | 11LE13MO-1222_PO 2020 |
| Responsible                                                                   |                       |
| Prof. Dr. Peter Thiemann                                                      |                       |
| Organizer                                                                     |                       |
| Department of Computer Science, Programming Languages                         |                       |
| Faculty                                                                       |                       |
| Faculty of Engineering                                                        |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 2                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| keine   none                                                                                                                                                                  |
| Recommended requirement                                                                                                                                                       |
| Interest in learning and applying new programming concepts and languages.<br>Also beneficial:<br>Basic programming knowledge<br>We recommend having and using your own laptop |

| Assigned Courses                                                                           |                  |                    |      |     |                             |
|--------------------------------------------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                                                       | Туре             | C/E                | ECTS | HoW | Workload                    |
| Grundlagen von Programmiersprachen /<br>Essentials of Programming Languages -<br>Lecture   | lecture course   | Core elec-<br>tive |      | 3.0 | 180 Stun-<br>den  <br>hours |
| Grundlagen von Programmiersprachen /<br>Essentials of Programming Languages -<br>Exercises | excercise course | Core elec-<br>tive |      | 1.0 |                             |

# Qualification

Students have a basic understanding of the descriptive means that a programming language can provide. They have mastered methods for modeling the syntax and semantics of programming languages. Students know tools to support modeling and can use them for selected problems.

# Usability

### As compulsory elective in

- M.Sc. Informatik / Computer Science in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) in Elective Courses in Computer Science

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

| Name of module                                                                     | Number of module      |  |
|------------------------------------------------------------------------------------|-----------------------|--|
| Grundlagen von Programmiersprachen / Essentials of Programming Lan-<br>guages      | 11LE13MO-1222_PO 2020 |  |
| course                                                                             |                       |  |
| Grundlagen von Programmiersprachen / Essentials of Programming Languages - Lecture |                       |  |
| Event type                                                                         | Number                |  |
| lecture course                                                                     | 11LE13V-1222          |  |
| Organizer                                                                          | <u>`</u>              |  |
| Department of Computer Science, Programming Languages                              |                       |  |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Attendance                | 42 Stunden   hours              |
| Independent study         | 124 Stunden   hours             |
| Hours of week             | 3.0                             |
| Recommended semester      | 2                               |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

# Contents

This course conveys the mathematical and logical concepts underlying programming languages using the language Agda. Agda is a functional language with an advanced type system that enables the encoding of many program properties in its types. Agda's type checker verifies proofs of these properties, so that one could also say this course is about verified programming.

The first part of the course covers the logical background needed to study the theory of programming languages to the extent that we can give formal guarantees about the execution of a program. The second part of the course puts this toolbox to work. We use Agda's features to model the syntax and the semantics of (simple) programming languages. We model type systems and connect them to the semantics through type soundness theorems.

Examination achievement

schriftliche Hausarbeit | written homework

Course achievement

siehe Übung | see exercises

Literature

online book Programming Language Foundations in Agda (PLFA) by Philipp Wadler, Wen Kokke, and Jeremy Siek

Compulsory requirement

keine | none

Recommended requirement

Interest in learning and applying new programming concepts and languages. Basic programming knowledge as well as basic foundations in mathematical logic.

We recommend having and using your own laptop.

| Name of module                                                                       | Number of module      |  |
|--------------------------------------------------------------------------------------|-----------------------|--|
| Grundlagen von Programmiersprachen / Essentials of Programming Lan-<br>guages        | 11LE13MO-1222_PO 2020 |  |
| course                                                                               |                       |  |
| Grundlagen von Programmiersprachen / Essentials of Programming Languages - Exercises |                       |  |
| Event type                                                                           | Number                |  |
| excercise course                                                                     | 11LE13Ü-1222          |  |
| Organizer                                                                            |                       |  |
| Department of Computer Science, Programming Languages                                |                       |  |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 14 Stunden   hours              |
| Hours of week             | 1.0                             |
| Recommended semester      | 2                               |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

#### Contents

Repetition of lecture's material and deepening of selected topics.

We discuss the exercises of the corresponding chapters (contained in the online book "Programming Language Foundations in Agda" (PLFA) by Philipp Wadler, Wen Kokke, and Jeremy Siek), and answer general questions related to Agda, Theorem Proving and Programming Language Theory.

Examination achievement

siehe Vorlesung | see lecture

Course achievement

keine | none

Both the exercises and the exercise sessions are voluntary, but we highly recommend doing the exercises and participating in the discussions.

# Compulsory requirement

 $\overline{\uparrow}$ 

| Name of module                                    | Number of module      |
|---------------------------------------------------|-----------------------|
| Hardware Security and Trust                       | 11LE13MO-1227_PO 2020 |
| Responsible                                       |                       |
| Prof. Dr. Christoph Scholl                        |                       |
| Organizer                                         |                       |
| Department of Computer Science, Operating Systems |                       |
| Faculty                                           |                       |
| Faculty of Engineering                            |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 2                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

#### Compulsory requirement

keine | none

Recommended requirement

Grundlagenwissen zu Kryptographie und Authentifizierung, VLSI Entwurf, Test und Verifikation | Basic knowledge of cryptography and authentication, VLSI design, testing and verification

Grundlagenwissen zu Technischer Informatik Basic knowledge of technical computer science

| Assigned Courses                       |                  |                    |      |     |                             |
|----------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                   | Туре             | C/E                | ECTS | HoW | Workload                    |
| Hardware Security and Trust - Lecture  | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 Stun-<br>den  <br>hours |
| Hardware Security and Trust - Exercise | excercise course | Core elec-<br>tive |      | 1.0 |                             |

#### Qualification

Studierende kennen die Grundlagen in Bezug auf Kryptographie, Authentifizierung, Secret Sharing, VLSI Entwurf, Test, Zuverlässigkeit und Verifikation. Darauf aufbauend haben Sie einen Überblick über den aktuellen Stand der Forschung im Bereich "Hardware Security and Trust".

Sie wissen Bescheid über verschiedene potentielle Angriffstechniken und kennen Möglichkeiten, diese Gefahren abzuwehren oder zu minimieren.

Insbesondere:

Physical and invasive attacks, side-channel attacks, physically unclonable functions, hardware-based true random number generators, watermarking of Intellectual Property (IP) blocks, FPGA security, passive and

active metering for prevention of piracy, access control, hardware Trojan detection and isolation in IP cores and integrated circuits (ICs).

L

Students know the basics of cryptography, authentication, secret sharing, VLSI design, testing, reliability and verification. Based on this, they will have an overview of the current state of research in the field of "Hardware Security and Trust".

They know about various potential attack techniques and know how to avert or minimize these dangers. Especially:

Physical and invasive attacks, side-channel attacks, physically unclonable functions, hardware-based true random number generators, watermarking of Intellectual Property (IP) blocks, FPGA security, passive and active metering for prevention of piracy, access control, hardware Trojan detection and isolation in IP cores and integrated circuits (ICs).

Examination achievement

Klausur (i.d.R. 90 bis 180 Minuten) | Written exam (usually 90 to 180 minutes)

(Wenn die Teilnehmerzahl sehr klein ist, kann stattdessen eine mündliche Prüfung durchgeführt werden. Die Studierenden werden rechtzeitig informiert. |

If number of participants is small, might be changed to oral exam instead. Students will be notified in good time.)

Course achievement

keine | none

Usability

Compulsory elective module for students of the study program

M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses

M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik

- B.Sc. in Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                                                                             | Number of module      |
|------------------------------------------------------------------------------------------------------------|-----------------------|
| Hardware Security and Trust                                                                                | 11LE13MO-1227_PO 2020 |
| course                                                                                                     |                       |
| Hardware Security and Trust - Lecture                                                                      |                       |
| Event type                                                                                                 | Number                |
| lecture course                                                                                             | 11LE13V-1227          |
| Organizer                                                                                                  |                       |
| Department of Computer Science, Computer Architecture<br>Department of Computer Science, Operating Systems |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Attendance                | 48 Stunden                      |
| Independent study         | 116 Stunden                     |
| Hours of week             | 3.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Languages                 | german, english                 |

# Contents

Die Konvergenz von IT-Systemen, Datennetzwerken und allgegenwärtigen eingebetteten Geräten in sogenannten Cyber Physical Systems hat zum Entstehen neuer Sicherheitsbedrohungen und -anforderungen im Zusammenhang mit der System-Hardware geführt. Die Manipulation von Hardware-Komponenten, die Sicherheitsfunktionen implementieren, kann die Systemintegrität beeinträchtigen, unautorisierten Zugang zu geschützten Daten ermöglichen und geistiges Eigentum (Intellectual Property) gefährden. Diese Gefährdungen zu adressieren, ist wesentlich, wenn verhindert werden soll, dass Hardware zur Schwachstelle des gesamten Systems wird. Zumindest ein Grundlagenwissen in "Hardware Security and Trust" ist wichtig für jeden Systemingenieur.

Zu Beginn werden die (notwendigen) Grundlagen über Kryptographie, Authentifizierung, Secret Sharing, VLSI Entwurf, Test, Zuverlässigkeit und Verifikation gelegt. Dann erfolgt eine Einführung in "Hardware Security and Trust", bei der folgende Themen angesprochen werden: Physical and invasive attacks, side-channel attacks, physically unclonable functions, hardware-based true random number generators, watermarking of Intellectual Property (IP) blocks, FPGA security, passive and active metering for prevention of piracy, access control, hardware Trojan detection and isolation in IP cores and integrated circuits (ICs).

The convergence of IT systems, data networks (including but not limited to the Internet) and ubiquitous embedded devices within the cyber-physical system paradigm has led to the emergence of new security threats associated with the system hardware. Manipulating the hardware components that implement security functions can compromise system integrity, provide unauthorized access to protected data, and endanger intellectual property. Addressing these vulnerabilities is essential in order to prevent the hardware from becoming the weak spot of today's systems. At least a basic knowledge of hardware security and trust issues is of importance to all system designers.

Starting with (necessary) basics on cryptography, authentication, secret sharing, VLSI design, test, reliability and verification the course will provide an introduction to hardware security and trust covering the following topics: physical and invasive attacks, side-channel attacks, physically unclonable functions, hardware-based true random number generators, watermarking of Intellectual Property (IP) blocks, FPGA security, passive and active metering for prevention of piracy, access control, hardware Trojan detection and isolation in IP cores and integrated circuits (ICs).

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

Literature

Introduction to Hardware Security and Trust Editors: Tehranipoor, Mohammad, Wang, Cliff (Eds.), Springer

Compulsory requirement

keine | none

Recommended requirement

Grundlagenwissen zu Kryptographie und Authentifizierung, VLSI Entwurf, Test und Verifikation | Basic knowledge of cryptography and authentication, VLSI design, testing and verification

Grundlagenwissen zu Technischer Informatik Basic knowledge of technical computer science

| Name of module                                                                                             | Number of module      |
|------------------------------------------------------------------------------------------------------------|-----------------------|
| Hardware Security and Trust                                                                                | 11LE13MO-1227_PO 2020 |
| course                                                                                                     |                       |
| Hardware Security and Trust - Exercise                                                                     |                       |
| Event type                                                                                                 | Number                |
| excercise course                                                                                           | 11LE13Ü-1227          |
| Organizer                                                                                                  |                       |
| Department of Computer Science, Computer Architecture<br>Department of Computer Science, Operating Systems |                       |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 16 Stunden                      |
| Hours of week             | 1.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Languages                 | german, english                 |

#### Contents

Übungen vertiefen Methoden und Algorithmen, die in der Vorlesung eingeführt wurden, anhand von praktischen Beispielen.

Exercises expand on the methods and algorithms that were introduced in the lecture using practical examples.

#### Examination achievement

Siehe Modulebene | See module level

# Course achievement

Siehe Modulebene | See module level

# Compulsory requirement

| Name of module                                 | Number of module      |
|------------------------------------------------|-----------------------|
| High-throughput data analysis with Galaxy      | 11LE13MO-1350_PO 2020 |
| Responsible                                    |                       |
| Prof. Dr. Rolf Backofen                        |                       |
| Organizer                                      |                       |
| Department of Computer Science, Bioinformatics |                       |
| Faculty                                        |                       |
| Faculty of Engineering                         |                       |

| ECTS-Points               | 6.0               |
|---------------------------|-------------------|
| Workload                  | 180 Stunden/hours |
| Hours of week             | 4.0               |
| Recommended semester      | 2                 |
| Duration                  | 1 Semester        |
| Compulsory/Elective (C/E) | Core elective     |
| Frequency                 | each term         |

| Compulsory requirement                                                                                       |
|--------------------------------------------------------------------------------------------------------------|
| None                                                                                                         |
| Recommended requirement                                                                                      |
| Basic knowledge in bioinformatics. It is highly recommended to attend the lecture and exercise "Introduction |

to data driven life sciences" (11LE13V-1335) before attending this course. This course builds on the content of this lecture.

| Assigned Courses                          |                  |                    |      |     |                             |
|-------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                      | Туре             | C/E                | ECTS | HoW | Workload                    |
| High-throughput data analysis with Galaxy | lecture course   | Core elec-<br>tive | 6.0  | 1.0 | 180 Stun-<br>den  <br>hours |
| High-throughput data analysis with Galaxy | excercise course | Core elec-<br>tive |      | 3.0 |                             |

# Qualification

In biological and medical research big data analysis is urgently needed for understandig the information which is encoded in the molecules of life. Many diseases, such as cancer, are caused by aberrations in those molecules. This lecture and exercise gives an practical introduction to the analysis of big data in life sciences. The open source web-based framework Galaxy (usegalaxy.eu) is used for data intensive biomedical research. Galaxy provides access to a powerful analysis infrastructure and allows for reproducible and transparent data analysis. Creating pipelines and workflows in Galaxy ensure a transparent and reproducible analysis of data.

After attending the course, students: can name different data formats

- know tools for bioinformatics data analysis
- know about different data analysis concepts
- know basic workflows of bioinformatics data analysis
- are able to visualize the results
- know major resources of biologcal reference data
- can use Galaxy for data analyis

Examination achievement

Klausur / written exam

Course achievement

schriftliche Ausarbeitung, Protokoll / written composition

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Pass/fail only compulsory elective module for students of the study program

- M.Sc. Microsystems Engineering (MSE) (2021) in Cuostomized Course Selection: Courses offered by other departmens of the University of Freiburg
- M.Sc. Mikrosystemtechnik (MST) (2021) in Individuelle Ergänzung Lehrangebot Uni Freiburg

| Name of module                            | Number of module      |
|-------------------------------------------|-----------------------|
| High-throughput data analysis with Galaxy | 11LE13MO-1350_PO 2020 |
| course                                    |                       |
| High-throughput data analysis with Galaxy |                       |
| Event type                                | Number                |
| lecture course                            | 11LE13V-1350_PO 2020  |

| ECTS-Points               | 6.0                 |
|---------------------------|---------------------|
| Workload                  | 180 Stunden   hours |
| Attendance                | 10 Stunden / hours  |
| Independent study         | 140 Stunden / hours |
| Hours of week             | 1.0                 |
| Recommended semester      | 2                   |
| Frequency                 | each term           |
| Compulsory/Elective (C/E) | Core elective       |
| Language                  | english             |

#### Contents

The course is offered as block course of one week. In the morning, a theoretical introduction gives an overview of the topic of the day and the underlying theoretical background of data types, tools, workflows and Galaxy functions.

Examination achievement

See module level

Course achievement

See module level

Literature

Resources used in the course

- about the Galaxy project: https://galaxyproject.org

- the European Galaxy server: https://usegalaxy.eu

Compulsory requirement

none

Recommended requirement

Basic knowledge in bioinformatics It is highly recommended to attend the lecture and exercise "Introduction to data driven life sciences" (11LE13V-1335) before attending this course. This course builds on the content of this lecture.

| Name of module                            | Number of module      |  |
|-------------------------------------------|-----------------------|--|
| High-throughput data analysis with Galaxy | 11LE13MO-1350_PO 2020 |  |
| course                                    |                       |  |
| High-throughput data analysis with Galaxy |                       |  |
| Event type                                | Number                |  |
| excercise course                          | 11LE13Ü-1350_PO 2020  |  |
| Organizer                                 |                       |  |

Department of Computer Science, Bioinformatics

| ECTS-Points               |                    |
|---------------------------|--------------------|
| Attendance                | 30 Stunden / hours |
| Hours of week             | 3.0                |
| Recommended semester      | 2                  |
| Frequency                 | each term          |
| Compulsory/Elective (C/E) | Core elective      |
| Language                  | english            |

# Contents

Afterwards the gained knowledge is applied by hands-on experience of real data analysis. The course is led by different experts and supervisors to assist the participants in the practical part.

**Examination achievement** 

See module level

Course achievement

See module level

↑

Compulsory requirement

| Name of module                                                                          | Number of module             |  |
|-----------------------------------------------------------------------------------------|------------------------------|--|
| High-performance computing: Distributed-memory parallelization on GPUs and accelerators | 11LE50MO-5284 ESE PO<br>2021 |  |
| Responsible                                                                             |                              |  |
| Prof. Dr. Lars Pastewka                                                                 |                              |  |
| Organizer                                                                               |                              |  |
| Department of Microsystems Engineering, Simulation                                      |                              |  |
| Faculty                                                                                 |                              |  |
| Faculty of Engineering                                                                  |                              |  |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden/hours               |
| Hours of week             | 4.0                             |
| Recommended semester      | 2                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement                                                                                  |
|---------------------------------------------------------------------------------------------------------|
| None                                                                                                    |
| Recommended requirement                                                                                 |
| Experience with programing in C++ or Fortran or Python; knowledge of common hardware architectures will |

be useful

| Assigned Courses                                                                                                                                                                       |                  |                    |      |     |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|------|-----|-----------|
| Name                                                                                                                                                                                   | Туре             | C/E                | ECTS | HoW | Workload  |
| Höchstleistungsrechnen: Parallelisierung<br>auf verteilten GPUs und Acceleratoren /<br>High-performance computing: Distribu-<br>ted-memory parallelization on GPUs and<br>accelarators | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 hours |
| Höchstleistungsrechnen: Parallelisierung<br>auf verteilten GPUs und Acceleratoren /<br>High-performance computing: Distribu-<br>ted-memory parallelization on GPUs and<br>accelarators | excercise course | Core elec-<br>tive |      | 2.0 |           |

# Qualification

After completing this class, the student will be able to...

- \* ...understand the difference between vectorization, shared-memory and distributed-memory parallelization \* ...write vectorized code for GPUs or accelerators using a hardware abstraction layer (such as Kokkos,
- Fortran, JAX or others)
- \* ...write distributed-memory code using the Message Passing Interface (MPI)

\* ...understand the foundations of the Lattice Boltzmann Method and how to parallelize it

#### Examination achievement

mündlicher Vortrag / oral examination

Erstellung von Demonstratoren oder Software / Development of demonstrators or software

#### Course achievement

keine / none

Usability

As compulsory elective module for students of the study program

- M.Sc. Microsystems Engineering and M.Sc. Mikrosystemtechnik
- M.Sc. Informatik / Computer Science in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) in Microsystems Engineering Concentrations Area: Materials and Fabrication

| Name of module                                                                                                                                                                | Number of module             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| High-performance computing: Distributed-memory parallelization on GPUs and accelerators                                                                                       | 11LE50MO-5284 ESE PO<br>2021 |  |
| course                                                                                                                                                                        |                              |  |
| Höchstleistungsrechnen: Parallelisierung auf verteilten GPUs und Acceleratoren / High-performance com-<br>puting: Distributed-memory parallelization on GPUs and accelarators |                              |  |
| Event type Number                                                                                                                                                             |                              |  |
| lecture course                                                                                                                                                                | 11LE50V-5284 PO 2021         |  |
| Organizer                                                                                                                                                                     | <u>`</u>                     |  |
| Department of Microsystems Engineering, Simulation                                                                                                                            |                              |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 hours                    |
| Attendance                | 60 on site                   |
| Independent study         | 120 self study               |
| Hours of week             | 2.0                          |
| Recommended semester      | 2                            |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Languages                 | german, english              |

# Contents

- \* Hardware architectures
- \* Vectorization, shared-memory and distributed memory parallelization
- \* Low-level interfaces to GPUs and accelerators: CUDA, HIP
- \* Abstraction layers for GPUs and accelerators: Kokkos, SYCL, Fortran and Python
- \* Message Passing Interface (MPI)
- \* Fluid Dynamics
- \* Lattice Boltzmann Method
- \* Domain decomposition

#### Examination achievement

See module level

Course achievement

See module level

#### Compulsory requirement

None

#### **Recommended requirement**

Experience with programing in C++ or Fortran or Python; knowledge of common hardware architectures will be useful

| Name of module                                                                                                                                                                | Number of module             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| High-performance computing: Distributed-memory parallelization on GPUs and accelerators                                                                                       | 11LE50MO-5284 ESE PO<br>2021 |  |
| course                                                                                                                                                                        |                              |  |
| Höchstleistungsrechnen: Parallelisierung auf verteilten GPUs und Acceleratoren / High-performance com-<br>puting: Distributed-memory parallelization on GPUs and accelarators |                              |  |
| Event type Number                                                                                                                                                             |                              |  |
| excercise course                                                                                                                                                              | 11LE50Ü-5284 PO 2021         |  |
| Organizer                                                                                                                                                                     |                              |  |
| Department of Microsystems Engineering, Simulation                                                                                                                            |                              |  |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Hours of week             | 2.0                          |
| Recommended semester      | 2                            |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Languages                 | german, english              |

# Contents

Throughout the term, the students will implement a parallel Lattice Boltzmann solver that can run on heterogeneous architectures. Students will be divided in groups that use different programming languages and programming models.

Examination achievement

See module level

Course achievement

See module level

↑

Compulsory requirement

| Name of module                                          | Number of module |
|---------------------------------------------------------|------------------|
| High-Performance Computing: Fluid Mechanics with Python | 11LE50MO-5285    |
| Responsible                                             | ·                |
| Prof. Dr. Lars Pastewka                                 |                  |
| Organizer                                               |                  |
| Department of Microsystems Engineering, Simulation      |                  |
| Faculty                                                 |                  |
| Faculty of Engineering                                  |                  |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 2                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement                                                                |
|---------------------------------------------------------------------------------------|
| None                                                                                  |
| Recommended requirement                                                               |
| Knowledge of a programming language (not necessarily Python, i.e. Java, C, C++, etc.) |

| Assigned Courses                                                                              |                  |                    |      |     |                  |
|-----------------------------------------------------------------------------------------------|------------------|--------------------|------|-----|------------------|
| Name                                                                                          | Туре             | C/E                | ECTS | HoW | Workload         |
| Höchstleistungsrechnen mit Python / High-<br>Performance Computing with Python                | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den |
| Höchstleistungsrechnen mit Python / High-<br>Performance Computing with Python - Pro-<br>ject | excercise course | Core elec-<br>tive |      | 2.0 |                  |

Qualification

The student

- can use Python for solving numerical problems using the numpy and scipy libraries and knows strategies for writing efficient code
- a can apply the Message Passing Interface (MPI) libraries to parallelize specific numerical problems
- a can use job submission systems on parallel computers to run their Python codes.

Examination achievement

Written examination. The students have to submit a written report, describing numerical results and scaling tests obtained with their simulation code.

Course achievement

none

| Usability |  |
|-----------|--|

Wahlpflichtmodul für Studierende des Studiengangs

 Bachelor of Science in Mikrosystemtechnik (PO 2018), im Wahlpflichtbereich, Bereich Mikrosystemtechnik

As compulsory elective module for students of the study program

- M.Sc. Microsystems Engineering and M.Sc. Mikrosystemtechnik
- M.Sc. Informatik / Computer Science in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) in Microsystems Engineering Concentrations Area: Materials and Fabrication

Students enrolled in the Master of Science in Sustainable Systems Engineering (2021 version of the examregulations) can complete this elective module in the technical concentration area *Sustainable Materials Engineering* or *Interdisciplinary Profile - Modules* <u>related to</u> the Subject Area.

| Name of module Number of module                                            |               |  |
|----------------------------------------------------------------------------|---------------|--|
| High-Performance Computing: Fluid Mechanics with Python                    | 11LE50MO-5285 |  |
| course                                                                     |               |  |
| Höchstleistungsrechnen mit Python / High-Performance Computing with Python |               |  |
| Event type                                                                 | Number        |  |
| lecture course                                                             | 11LE50V-5285  |  |
| Organizer                                                                  |               |  |
| Department of Microsystems Engineering, Simulation                         |               |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden                  |
| Attendance                | 52 Stunden                   |
| Independent study         | 128 Stunden                  |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |

# Contents

This class teaches parallel scientific computing with Python using the numpy library for fast array operations. Parallelization strategies that use the Message Passing Interface (MPI) will be presented. These technical concepts will be applied to the solution of fluid mechanical problems using the lattice Boltzmann method.

Scientific computing:

- 1. Efficient Python: basics, numpy arrays, numpy operations, scipy
- 2. Translating mathematical expressions into efficient array operations
- 3. The Message Passing Interface (MPI)
- 4. Parallelization strategies
- 5. Practical aspects of working with High-Performance clusters

Fluid mechanics and the Lattice Boltzmann method:

- 6. Phenomenology of fluid mechanics
- 7. Lattice gas and lattice Boltzmann
- 8. Boundary conditions

# Examination achievement

See module level

Course achievement

See module level

# Literature

A. Scopatz, K.D. Huff, "Effective Computation in Physics" (O'Reilly 2015) W.A. Wolf-Gladrow, "Lattice-Gas Cellular Automata and Lattice Boltzmann Models" (Springer 2000)

T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, E.M. Viggen, "The Lattice Boltzmann Method" (Springer 2017)

# Compulsory requirement

None

# **Recommended requirement**

Knowledge of a programming language (not necessarily Python, i.e. Java, C, C++, etc.)

| Name of module Number of modu                                                        |               |  |
|--------------------------------------------------------------------------------------|---------------|--|
| High-Performance Computing: Fluid Mechanics with Python                              | 11LE50MO-5285 |  |
| course                                                                               |               |  |
| Höchstleistungsrechnen mit Python / High-Performance Computing with Python - Project |               |  |
| Event type Number                                                                    |               |  |
| excercise course                                                                     | 11LE50Ü-5285  |  |
| Organizer                                                                            |               |  |
| Department of Microsystems Engineering, Simulation                                   |               |  |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

The students will implement their own parallel Lattice Boltzmann simulation code in the computer lab accompanying this lecture series.

Examination achievement

See module level

Course achievement

See module level

Compulsory requirement

None

Recommended requirement

Knowledge of a programming language (not necessarily Python, i.e. Java, C, C++, etc.)

| Name of module                                          | Number of module      |
|---------------------------------------------------------|-----------------------|
| High-Performance Computing: Molecular Dynamics with C++ | 11LE50MO-5288 PO 2021 |
| Responsible                                             |                       |
| Prof. Dr. Lars Pastewka                                 |                       |
| Organizer                                               |                       |
| Department of Microsystems Engineering, Simulation      |                       |
| Faculty                                                 |                       |
| Faculty of Engineering                                  |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 2                            |
| Duration                  | 1 semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

| Compulsory requirement                                                                |
|---------------------------------------------------------------------------------------|
| None                                                                                  |
| Recommended requirement                                                               |
| Knowledge of a programming language (not necessarily Python, i.e. Java, C, C++, etc.) |

| Assigned Courses                                                                                      |                  |                    |      |     |           |
|-------------------------------------------------------------------------------------------------------|------------------|--------------------|------|-----|-----------|
| Name                                                                                                  | Туре             | C/E                | ECTS | HoW | Workload  |
| High-Performance Computing: Molecular Dynamics with C++                                               | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 hours |
| Molekularstatik und Molekulardynamik /<br>Molecular Statics and Molecular Dynamics<br>Veranstaltung_2 | excercise course | Core elec-<br>tive |      | 2.0 | -         |

Qualification

The student

- understands the physics of interatomic bonds, potential energy landscapes and the statistical foundations of thermodynamics
- can transfer these concepts to molecular simulations, in particular interatomic potentials, transition paths, thermostats and barostats
- can select initial conditions and interatomic potentials, run a molecular dynamics simulation and evaluate and interpret the simulation results

Examination achievement

Written report

#### Course achievement

There are exercises at regular intervals that have to be worked on and handed in. These are corrected and assessed with points. The course work is passed if 50% of the excercise sheets have been successfully completed.

# Usability

Students enrolled in the Master of Science in Sustainable Systems Engineering (2021 version of the exam regulations) can complete this elective module in the technical concentration area Sustainable Materials Engineering.

| Name of module                                          | Number of module      |
|---------------------------------------------------------|-----------------------|
| High-Performance Computing: Molecular Dynamics with C++ | 11LE50MO-5288 PO 2021 |
| course                                                  |                       |
| High-Performance Computing: Molecular Dynamics with C++ |                       |
| Event type                                              | Number                |
| lecture course                                          | 11LE50V-5286          |
| Organizer                                               |                       |
| Department of Microsystems Engineering, Simulation      |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 hours                    |
| Attendance                | 56 Stunden                   |
| Independent study         | 124 Stunden                  |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

#### Contents

This lecture introduces atomic-scale simulation techniques with a focus on solid mechanics.

- 1. Materials physics
- 2. Interatomic potentials
- 3. Molecular statics and potential energy landscapes
- 4. Molecular dynamics
- 5. Classical statistical mechanics
- 6. Thermostats and barostats
- 7. Analysis and visualization

#### Examination achievement

see module details

Course achievement

see module details

#### Literature

Understanding Molecular Simulation: From Algorithms to Applications, Daan Frenkel and Berend Smit (Academic Press, 2001)

Computer simulation of liquids, M. P. Allen and Dominic J. Tildesley (Clarendon Press, Oxford, 1996)

Compulsory requirement

None

Recommended requirement

Knowledge of a programming language (not necessarily Python, i.e. Java, C, C++, etc.)

| Name of module                                                                                  | Number of module |  |  |
|-------------------------------------------------------------------------------------------------|------------------|--|--|
| High-Performance Computing: Molecular Dynamics with C++ 11LE50MO-5288 PO                        |                  |  |  |
| course                                                                                          |                  |  |  |
| Molekularstatik und Molekulardynamik / Molecular Statics and Molecular Dynamics Veranstaltung_2 |                  |  |  |
| Event type                                                                                      | Number           |  |  |
| excercise course                                                                                | 11LE50Ü-5286     |  |  |
| Organizer                                                                                       |                  |  |  |
| Department of Microsystems Engineering, Simulation                                              |                  |  |  |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Workload                  | -                            |
| Attendance                | -                            |
| Independent study         | -                            |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

The students will solve problems from materials science with a widely used molecular simulation code.

Successful completion of >=50% of exercise sheets

Examination achievement

see module details

Course achievement

see module details

Compulsory requirement

None

↑

Recommended requirement

Knowledge of a programming language (not necessarily Python, i.e. Java, C, C++, etc.)

| Name of module                                                 | Number of module      |
|----------------------------------------------------------------|-----------------------|
| Information Retrieval                                          | 11LE13MO-1304_PO 2020 |
| Responsible                                                    |                       |
| Prof. Dr. Hannah Bast                                          |                       |
| Organizer                                                      |                       |
| Department of Computer Science, Algorithms and Data Structures |                       |
| Faculty                                                        |                       |
| Faculty of Engineering                                         |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 1                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory r | requirement |
|--------------|-------------|
|--------------|-------------|

keine | none

Recommended requirement

Grundlagen zu Algorithmen und Datenstrukturen, Programmierkenntnisse (C++ / C) |

Fundamental knowledge about algorithms and data structures, programming skills (C++ / C)

| Assigned Courses                                     |                  |                    |      |     |                             |
|------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                 | Туре             | C/E                | ECTS | HoW | Workload                    |
| Suchmaschinen / Information Retrieval -<br>Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Suchmaschinen / Information Retrieval -<br>Exercises | excercise course | Core elec-<br>tive |      | 2.0 |                             |

Qualification

Students should be able to understand and apply the basics of information systems, especially search engines. This applies to both the algorithmic aspects (e.g. index data structures) and quality aspects (e.g. ranking of search results), as well as network communication and user interfaces (e.g. AJAX programming).

Examination achievement

Klausur (i.d.R. 90 bis 180 Minuten) | Written exam (usually 90 to 180 minutes)

Course achievement

Es gibt Übungsaufgaben im regelmäßigen Rhythmus, die bearbeitet und abgegeben werden müssen. Diese werden korrigiert und mit Punkten bewertet. Die Studienleistung ist bestanden, wenn mindestens 50% der Gesamtpunkte im Semester erreicht sind.

Exercise sheets have to be completed and handed in on a regular basis. These will be scored and awarded with points. To successfully complete the course work (Studienleistung), you need to have reached at least 50% of the overall number of achievable points for the semester.

# Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

ſ

| Name of module                                                 | Number of module      |
|----------------------------------------------------------------|-----------------------|
| Information Retrieval                                          | 11LE13MO-1304_PO 2020 |
| course                                                         |                       |
| Suchmaschinen / Information Retrieval - Lecture                |                       |
| Event type                                                     | Number                |
| lecture course                                                 | 11LE13V-1304          |
| Organizer                                                      |                       |
| Department of Computer Science, Algorithms and Data Structures |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 30 Stunden                   |
| Independent study         | 120 Stunden                  |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

#### Contents

In dieser Vorlesung werden alle Themen behandelt, die man zur Realisierung der typischen Funktionalität eines Informationssystems / einer Suchmaschine nach dem Stand der Kunst braucht, und die nicht oder nicht in der erforderlichen Tiefe in Bachelor- oder Mastervorlesungen zum Thema Algorithmen oder Netz-werke vermittelt werden. Dazu gehören:

Algorithmen und Datenstrukturen, z.B.: invertierter Index, Präfixsuche, fehlertolerante Suche, I/O-Effizienz. Qualitätsaspekte: Ranking von Suchergebnissen, Clustering, maschinelle Lernverfahren.

Netzwerkkommunikation und Benutzerschnittstellen: Webserver, Socket-Kommunikation, AJAX-Programmierung.

1

This course teaches all topics required to understand and implement a search engine with standard functionality according to the state of the art. Topics include: inverted index, ranking, list intersection, compression, fuzzy search, web applications, synonym search, clustering, text classification, and ontology search.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

Literature

Wird in der Veranstaltung bekanntgegeben.

Ein Standartbuch das einen Großteil des Veranstaltungsinhalts abdeckt, ist "Manning, Raghavan, Schütze: Introduction to Information Retrieval" (auch online verfügbar: http://nlp.stanford.edu/IR-book ).

All materials needed for the course are provided during the course.

A standard text book covering much of the course material is "Manning, Raghavan, Schütze: Introduction to Information Retrieval", which is also available online: http://nlp.stanford.edu/IR-book .

Compulsory requirement

keine | none

Recommended requirement

Grundlagen zu Algorithmen und Datenstrukturen, Programmierkenntnisse (C++ / C)

Fundamental knowledge about algorithms and data structures, programming skills (C++ / C)
| Name of module                                                 | Number of module      |  |
|----------------------------------------------------------------|-----------------------|--|
| Information Retrieval                                          | 11LE13MO-1304_PO 2020 |  |
| course                                                         |                       |  |
| Suchmaschinen / Information Retrieval - Exercises              |                       |  |
| Event type                                                     | Number                |  |
| excercise course                                               | 11LE13Ü-1304          |  |
| Organizer                                                      |                       |  |
| Department of Computer Science, Algorithms and Data Structures |                       |  |

ECTS-PointsAttendance30 StundenHours of week2.0Recommended semesterFrequencytakes place each winter term

Core elective

english

| Contents                                                                                                       |
|----------------------------------------------------------------------------------------------------------------|
| Praktische Anwendung der Methoden aus der Vorlesung  <br>Practical application of the methods from the lecture |
| Examination achievement                                                                                        |
| Siehe Modulebene  <br>See module level                                                                         |
| Course achievement                                                                                             |
| Siehe Modulebene  <br>See module level                                                                         |
| Compulsory requirement                                                                                         |
|                                                                                                                |
| $\uparrow$                                                                                                     |

Compulsory/Elective (C/E)

Language

| Name of module                                                   | Number of module      |
|------------------------------------------------------------------|-----------------------|
| Interactive Proof Systems and Cryptographic Protocols            | 11LE13MO-1351_PO 2020 |
| Responsible                                                      |                       |
| Prof. Dr. Christian Schindelhauer                                |                       |
| Organizer                                                        |                       |
| Department of Computer Science, Computer Networks and Telematics |                       |
| Faculty                                                          |                       |
| Faculty of Engineering                                           |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden                     |
| Hours of week             | 4.0                             |
| Attendance                | 32 Studen                       |
| Independent study         | 116 Stunden                     |
| Recommended semester      | 2                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement       |
|------------------------------|
| keine / none                 |
| Recommended requirement      |
| Introduction to Cryptography |

| Assigned Courses                                           |                  |                    |      |     |          |
|------------------------------------------------------------|------------------|--------------------|------|-----|----------|
| Name                                                       | Туре             | C/E                | ECTS | HoW | Workload |
| Interactive Proof Systems and Cryptogra-<br>phic Protocols | lecture course   | Core elec-<br>tive |      | 2.0 |          |
| Interactive Proof Systems and Cryptogra-<br>phic Protocols | excercise course | Compul-<br>sory    |      | 2.0 |          |

### Qualification

Upon successful completion of this module, students will be able to understand, evaluate, and apply cryptographic protocols. They will be able to explain the theoretical foundations of interactive proof systems (e.g., AM, IP, MIP, PCP) and analyze their significance for complexity theory and modern cryptography. Additionally, they will be capable of implementing Zero-Knowledge Proofs and related concepts (e.g., Bulletproofs and mental card games) and assessing their applicability to real-world problems.

I

Examination achievement

Bei mehr als 16 Teilnehmern findet eine schriftliche Prüfung statt (Dauer zwischen 90 und 180 Minuten). Ansonsten findet eine mündliche Prüfung statt (Dauer 20 bis 30 Minuten).

In case there are more than 16 students there will be an written exam (duration between 90 and 180 minutes). Otherwise an oral exam will take place (duration 20 to 30 minutes).

#### Course achievement

Es gibt Übungsaufgaben im regelmäßigen Rhythmus, die bearbeitet und abgegeben werden müssen. Diese werden korrigiert und mit Punkten bewertet. Die Studienleistung ist bestanden, wenn mindestens 50% der Gesamtpunkte im Semester erreicht sind.

Exercise sheets have to be completed and handed in on a regular basis. These will be scored and awarded with points.

To pass the course work (Studienleistung), you must obtain at least 50% of the exercise points overall.

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

 $\uparrow$ 

| Name of module                                        | Number of module      |
|-------------------------------------------------------|-----------------------|
| Interactive Proof Systems and Cryptographic Protocols | 11LE13MO-1351_PO 2020 |
| course                                                |                       |
| Interactive Proof Systems and Cryptographic Protocols |                       |
| Event type                                            | Number                |
| lecture course                                        | 11LE13V-1351_PO 2020  |
| Organizer                                             | ^<br>                 |

Department of Computer Science, Computer Networks and Telematics

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 32 Stunden                      |
| Independent study         | 116 Stunden                     |
| Hours of week             | 2.0                             |
| Recommended semester      | 2                               |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

# Contents

. Cryptographic Protocols:

Fiat-Shamir Protocol, Digital Signatures, Blockchain, Authentication

2. Interactive Proof Systems:

Arthur-Merlin Systems (AM), IP (Interactive Proofs), Relationships between Complexity Classes: AM, IP, PSPACE, NP, Multi-Prover Interactive Proofs (MIP), Probabilistically Checkable Proofs (PCP): The PCP Theorem, Zero-Knowledge Proofs, particularly Bulletproofs

3. Mental Card Games:

Coin Switching over the Telephone, Mental Poker, Card Game Toolboxes, Bayer-Grothe Shuffle

Examination achievement

Course achievement

Literature

Thaler, J., 2022. Proofs, Arguments, and Zero-knowledge Delfs, H., Knebl, H. and Knebl, H., 2002. Introduction to cryptography

Compulsory requirement

keine / None

Recommended requirement

Introduction to Cryptography

T

| Name of module                                        | Number of module      |
|-------------------------------------------------------|-----------------------|
| Interactive Proof Systems and Cryptographic Protocols | 11LE13MO-1351_PO 2020 |
| course                                                |                       |
| Interactive Proof Systems and Cryptographic Protocols |                       |
| Event type                                            | Number                |
| excercise course                                      | 11LE13Ü-1351_PO 2020  |
| Organizer                                             |                       |

Department of Computer Science, Computer Networks and Telematics

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Compulsory                      |
| Language                  | english                         |

# Contents

↑

Design, analysis and implementation of cryptographic protocols. Proof of correctness, soundness and completeness of Interactive Proof Systems. Mathematical questions about the underlying theory.

Examination achievement

Course achievement

Compulsory requirement

| Name of module Number of modu                  |                       |
|------------------------------------------------|-----------------------|
| Introduction to data driven life sciences      | 11LE13MO-1335_PO 2020 |
| Responsible                                    |                       |
| Prof. Dr. Rolf Backofen                        |                       |
| Organizer                                      |                       |
| Department of Computer Science, Bioinformatics |                       |
| Faculty                                        |                       |
| Faculty of Engineering                         |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 3                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement  |  |
|-------------------------|--|
| None                    |  |
| Recommended requirement |  |
| None                    |  |

| Assigned Courses                          |                  |                    |      |     |           |
|-------------------------------------------|------------------|--------------------|------|-----|-----------|
| Name                                      | Туре             | C/E                | ECTS | HoW | Workload  |
| Introduction to data driven life sciences | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 hours |
| Introduction to data driven life sciences | excercise course | Core elec-<br>tive |      | 2.0 |           |

### Qualification

In biological and medical research big data analysis is urgently needed for understandig the information that is encoded in the molecules of life. Many diseases, such as cancer, are caused by aberrations in those molecules.

Students understand the theoretical biological and bioinformatics background and know about techniques for generation and analysis of high-throughput data in life sciences.

### Examination achievement

Oral exam (usually 30 or 45 minutes)

If the number of participants is very high (> 30), a written examination may be held instead. The students will be informed in good time.

### Course achievement

none

Recommendation

Solving exercise sheets is optional but highly recommended.

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (PO 2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (PO 2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

#### Important note for M.Sc. Informatik / Computer Science:

This module is available as both

- a specialization lecture in Computer Science (with a graded assessment / Prüfungsleistung)
- as a course in the application area Applied Bioinformatics (as pass/fail course / Studienleistung) (see according module in online module handbook / planner of studies)

Take care during the booking process, as that will define the category in which the course is considered. **You can't change the category afterwards!** So, you can't change it from PL to SL or vice versa.

Wahlpflichtmodul für Studierende des Studiengangs

- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)
- <u></u>

| Name of module                                 | Number of module      |  |
|------------------------------------------------|-----------------------|--|
| Introduction to data driven life sciences      | 11LE13MO-1335_PO 2020 |  |
| course                                         |                       |  |
| Introduction to data driven life sciences      |                       |  |
| Event type                                     | Number                |  |
| lecture course                                 | 11LE13V-1335          |  |
| Organizer                                      |                       |  |
| Department of Computer Science, Bioinformatics |                       |  |

Department of Computer Science, Bioinformatics

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 hours                    |
| Attendance                | 30 hours                     |
| Independent study         | 120 hours                    |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

In biological and medical research big data analysis is urgently needed for understandig the information that is encoded in the molecules of life. Many diseases, such as cancer, are caused by aberrations in those molecules. In this lecture you will learn the theoretical biological and bioinformatics background and techniques for generation and analysis of high-throughput data in life sciences.

Examination achievement

see module details

Course achievement

see module details

Compulsory requirement

None

Recommended requirement

None

Recommendation

### Important note for M.Sc. Computer Science:

This module is available as both

- a specialization lecture in Computer Science (with a graded assessment / Prüfungsleistung)
- as a course in the application area Applied Bioinformatics (as pass/fail course / Studienleistung)

Take care during the booking process, as that will define the category in which the course is considered. You can't change the category afterwards!

So, you can't change it from PL to SL or vice versa.

| Name of module                                 | Number of module      |  |  |
|------------------------------------------------|-----------------------|--|--|
| Introduction to data driven life sciences      | 11LE13MO-1335_PO 2020 |  |  |
| course                                         |                       |  |  |
| Introduction to data driven life sciences      |                       |  |  |
| Event type                                     | Number                |  |  |
| excercise course                               | 11LE13Ü-1335          |  |  |
| Organizer                                      |                       |  |  |
| Department of Computer Science, Disinformation |                       |  |  |

Department of Computer Science, Bioinformatics

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 30 hours                     |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

To apply the gained knowledge from the lecture, exercises to various topics of high-throughput data analysis are offered. Moreover, we will get to know the workflow management framework Galaxy which is an open source tool for life science data analysis.

Examination achievement

See module level

Course achievement

See module level

Compulsory requirement

| Name of module                                        | Number of module      |
|-------------------------------------------------------|-----------------------|
| Isabelle/HOL: programming, verified!                  | 11LE13MO-1336_PO 2020 |
| Responsible                                           |                       |
| Prof. Dr. Armin Biere                                 |                       |
| Organizer                                             |                       |
| Department of Computer Science, Computer Architecture |                       |
| Faculty                                               |                       |
| Faculty of Engineering                                |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 2                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None                                                                                                                                                                                                               |
| Recommended requirement                                                                                                                                                                                            |
| There is no formal requirement, but this course will deal with proofs of correctness (of programs, data struc-<br>tures). Therefore, you should not be scared by reading quantifiers and understanding properties. |

| Assigned Courses                     |                  |                    |      |     |                             |
|--------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                 | Туре             | C/E                | ECTS | HoW | Workload                    |
| Isabelle/HOL: programming, verified! | lecture course   | Core elec-<br>tive |      | 2.0 | 180 Stun-<br>den  <br>hours |
| Isabelle/HOL: programming, verified! | excercise course | Core elec-<br>tive |      | 2.0 |                             |

| The student knows how write proofs in the proof assistant Isabelle/HOL and verify programs and data struc-       |
|------------------------------------------------------------------------------------------------------------------|
| tures. In particular, they are familiar with the concept of induction, inductive predicates, program refinement, |
| and program generation.                                                                                          |

Examination achievement

Qualification

Written graded assessment

(Please see "Bemerkung / Empfehlung" resp. "Remark / Recommendation" for more information)

### Course achievement

Weekly exercise with proofs to do in Isabelle will be given every week. You need to (at least try to) solve those.

#### Recommendation

There will be no exam, but instead there will be a project: You will work on your own formalization.

#### Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Informatik (PO 2018)
- B.Sc. in Embedded Systems Engineering (PO 2018)

| Name of module                       | Number of module      |  |  |
|--------------------------------------|-----------------------|--|--|
| Isabelle/HOL: programming, verified! | 11LE13MO-1336_PO 2020 |  |  |
| course                               |                       |  |  |
| Isabelle/HOL: programming, verified! |                       |  |  |
| Event type                           | Number                |  |  |
| lecture course                       | 11LE13V-1336_PO 2020  |  |  |
| Organizer                            |                       |  |  |
|                                      |                       |  |  |

Department of Computer Science, Computer Architecture

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Attendance                | 28 Stunden   hours              |
| Independent study         | 124 Stunden   hours             |
| Hours of week             | 2.0                             |
| Recommended semester      | 2                               |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

### Contents

This course is divided in two parts. In the first one, you will learn to use the proof assistant Isabelle/HOL and how to convince the system that your proof is correct. In the second part, you will work on verifying programs in Isabelle/HOL and exporting them such that you can also execute them outside of the proof assistant.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

#### Literature

The part of the lecture that focuses on Isabelle can be nicely completed by reading the first part of "Concrete Semantics in Isabelle/HOL" book by Nipkow and Klein (http://concrete-semantics.org/, PDF available). The second part of lecture focuses on program verification. It will draw some inspiration from the "Functional Algorithms Verified" book (https://functional-algorithms-verified.org/, PDF available) that focuses on data structures and their performance.

Compulsory requirement

None

**Recommended requirement** 

There is no formal requirement, but this course will deal with proofs of correctness (of programs, data structures). Therefore, you should not be scared by reading quantifiers and understanding properties.

| Name of module Number of module                          |                      |
|----------------------------------------------------------|----------------------|
| Isabelle/HOL: programming, verified! 11LE13MO-1336_PO 20 |                      |
| course                                                   |                      |
| Isabelle/HOL: programming, verified!                     |                      |
| Event type                                               | Number               |
| excercise course                                         | 11LE13Ü-1336_PO 2020 |
| Organizer                                                |                      |

Department of Computer Science, Computer Architecture

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 28 Stunden   hours              |
| Hours of week             | 2.0                             |
| Recommended semester      | 2                               |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

#### Contents

You are required to bring a laptop for the exercise session. During the exercises, you will practice theorems proving and refinement in Isabelle. At the end of the course, you will have a larger project to do (most likely over three weeks) that will replace the exercise sessions in order for you to practise on a larger scale proofs.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

#### Compulsory requirement

| Name of module                                                                                                                       | Number of module |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Maschinelles Lernen in den Lebenswissenschaften / Machine Learning in         11LE13MO-1112_PO 202           Life Science         11 |                  |
| Responsible                                                                                                                          |                  |
| Prof. Dr. Rolf Backofen                                                                                                              |                  |
| Faculty                                                                                                                              |                  |
| Faculty of Engineering                                                                                                               |                  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 hours                    |
| Hours of week             | 4.0                          |
| Recommended semester      | 3                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

### Compulsory requirement

none

#### Recommended requirement

Knowledge in Machine Learning and Bioinformatics, basic knowledge in Molecular biology, and practical experience in Python.

| Assigned Courses                                                                                       |      |                    |      |     |                             |
|--------------------------------------------------------------------------------------------------------|------|--------------------|------|-----|-----------------------------|
| Name                                                                                                   | Туре | C/E                | ECTS | HoW | Workload                    |
| Maschinelles Lernen in den Lebenswissen-<br>schaften / Machine Learning in Life Science<br>- Lecture   |      | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Maschinelles Lernen in den Lebenswissen-<br>schaften / Machine Learning in Life Science<br>- Exercises |      | Core elec-<br>tive |      | 2.0 |                             |

# Qualification

Students learn to consider machine learning applications in life sciences from different perspectives. They understand the biological point of view in regards to problems in the domains of genomics, proteomics, systems biology and biological literature information mining. They also have an understanding of different questions from the machine learning point of view, such as underlying assumptions in predictive models, the quality assessment problem, the design choices for supervised and unsupervised models.

Examination achievement

Klausur (i.d.R. 90 bis 180 Minuten) | Written exam (usually 90 to 180 minutes)

Course achievement

keine | none

| Usability                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Compulsory elective module for students of the study program</li> <li>M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung   Specialization Courses</li> <li>M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science</li> </ul> |
| Students of the M.Sc. programmes Microsystems Engg. and Mikrosystemtechnik (PO 2021) can select this module in the concentration area Biomedical Engineering (Biomedizinische Technik).                                                                                            |

| Name of module                                                                               | Number of module      |  |
|----------------------------------------------------------------------------------------------|-----------------------|--|
| Maschinelles Lernen in den Lebenswissenschaften / Machine Learning in Life Science           | 11LE13MO-1112_PO 2020 |  |
| course                                                                                       |                       |  |
| Maschinelles Lernen in den Lebenswissenschaften / Machine Learning in Life Science - Lecture |                       |  |
| Event type                                                                                   | Number                |  |
| lecture course                                                                               | 11LE13V-1112          |  |
| Organizer                                                                                    |                       |  |
| Department of Computer Science, Bioinformatics                                               |                       |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 30 Stunden                   |
| Independent study         | 120 Stunden                  |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

The course will maintain a double perspective: from the biological point of view we consider problems in the domains of genomics, proteomics, systems biology and biological literature information mining; from the machine learning point of view, we consider questions such as the underlying assumptions in predictive models, the quality assessment problem, the design choices for supervised and unsupervised models.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

#### Literature

The course material is based on influential publications both in the Machine Learning and/or Bioinformatics literature:

- P Baldi, S Brunak, Y Chauvin, C.A.F Andersen, H Nielsen, Assessing the accuracy of prediction algorithms for classication: an overview, Bioinformatics 2000
- T Fawcett, An introduction to ROC analysis, Pattern Recognition Letters 2006
- T Dietterich, Approximate statistical tests for comparing supervised classication learning algorithms, Neural Computation 1998
- D Jiang, C Tang, A Zhang, Cluster analysis for gene expression data: A survey, IEEE transactions on knowledge and data engineering 2004

- S.C Madeira, A.L Oliveira, Biclustering algorithms for biological data analysis: a survey, IEEE Transactions on computational Biology and Bioinformatics 2004
- A Krause, J Stoye, Large scale hierarchical clustering of protein sequences, BMC bioinformatics 2005
- P Baldi, G Pollastri, The principled design of large-scale recursive neural network architectures-dag-rnns and the protein structure prediction problem, The Journal of Machine Learning Research 2003
- C Leslie, E Eskin, W Noble, The spectrum kernel: A string kernel for SVM protein classication, Pacic Symposium on Biocomputing 2002
- X.W. Chen, Prediction of protein-protein interactions using random decision forest framework, Bioinformatics 2005

Compulsory requirement

none

### **Recommended requirement**

Knowledge in Machine Learning and Bioinformatics, basic knowledge in Molecular biology, and practical experience in Python.

| Name of module                                                                                            | Number of module |  |
|-----------------------------------------------------------------------------------------------------------|------------------|--|
| Maschinelles Lernen in den Lebenswissenschaften / Machine Learning in 11LE13MO-1112_PO 20<br>Life Science |                  |  |
| course                                                                                                    |                  |  |
| Maschinelles Lernen in den Lebenswissenschaften / Machine Learning in Life Science - Exercises            |                  |  |
| Event type                                                                                                | Number           |  |
| excercise course                                                                                          | 11LE13Ü-1112     |  |
| Organizer                                                                                                 |                  |  |
| Department of Computer Science, Bioinformatics                                                            |                  |  |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 30 Stunden                   |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

| Contents                                                                                                               |  |
|------------------------------------------------------------------------------------------------------------------------|--|
| In the exercises, students will learn through example scenarios to apply the principles and methods from the lectures. |  |
| Examination achievement                                                                                                |  |
| Siehe Modulebene  <br>See module level                                                                                 |  |
| Course achievement                                                                                                     |  |
| Siehe Modulebene  <br>See module level                                                                                 |  |
| Compulsory requirement                                                                                                 |  |
|                                                                                                                        |  |
| $\uparrow$                                                                                                             |  |

| Name of module                                                           | Number of module      |  |
|--------------------------------------------------------------------------|-----------------------|--|
| Modelling and System Identification                                      | 11LE50MO-2080_PO 2020 |  |
| Responsible                                                              | *                     |  |
| Prof. Dr. Moritz Diehl                                                   |                       |  |
| Organizer                                                                |                       |  |
| Department of Microsystems Engineering, Systems Control and Optimization |                       |  |
| Faculty                                                                  |                       |  |
| Faculty of Engineering                                                   |                       |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 hours                    |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement                      |
|---------------------------------------------|
| keine   none                                |
| Recommended requirement                     |
| fundamental knowledge in higher mathematics |

| Assigned Courses                                                                                 |                  |                    |      |     |           |
|--------------------------------------------------------------------------------------------------|------------------|--------------------|------|-----|-----------|
| Name                                                                                             | Туре             | C/E                | ECTS | HoW | Workload  |
| Modellbildung und Systemidentifikation /<br>Modelling and System Identification - Lec-<br>ture   | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 hours |
| Modellbildung und Systemidentifikation /<br>Modelling and System Identification - Exer-<br>cises | excercise course | Core elec-<br>tive |      | 2.0 |           |

Qualification

Aim of the module is to enable the students to create and identify models that help to describe and predict the behaviour of dynamic systems. In particular, students shall become able to use input-output measurement data in form of time series to identify unknown system parameters and to assess the validity and accuracy of the obtained models.

Examination achievement

Written exam (180 minutes)

### Course achievement

The course work is successfully completed if both of the following criteria are met:

1) Passing the exercise: For each exercise sheet, the achieved points are determined in percentage points with respect to the maximum score of the respective exercise sheet. The two exercise sheets with the lowest percentage points achieved will not be included in the assessment. The exercise is considered passed if the average of the achieved percentage points in the remaining exercise sheets is at least 50 percentage points.

2) Passing the micro-examinations: For each micro-examination, the points achieved are determined in percentage points with respect to the maximum number of points. The micro-exam in which the fewest percentage points were obtained will not be included in the evaluation. The microclauses are considered passed if the average of the percentage points achieved in the remaining microclauses is at least 50 percentage points.

Usability

As compulsory elective in

- M.Sc. Informatik / Computer Science in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) in Advanced Microsystems Engineering
- M.Sc. Microsystems Engineering (PO 2021) in Advanced Microsystems
- M.Sc. Mikrosystemtechnik (PO 2021), Vertiefung Schaltungen und Systeme

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

Î

| Name of module                                                                         | Number of module      |  |
|----------------------------------------------------------------------------------------|-----------------------|--|
| Modelling and System Identification                                                    | 11LE50MO-2080_PO 2020 |  |
| course                                                                                 |                       |  |
| Modellbildung und Systemidentifikation / Modelling and System Identification - Lecture |                       |  |
| Event type                                                                             | Number                |  |
| lecture course                                                                         | 11LE50V-2080          |  |
| Organizer                                                                              |                       |  |

Department of Microsystems Engineering, Systems Control and Optimization

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 hours                    |
| Attendance                | 60 hours                     |
| Independent study         | 120 hours                    |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

### Contents

Linear and Nonlinear Least Squares, Maximum Likelihood and Bayesian Estimation, Cramer-Rao-Inequality,

Recursive Estimation, Dynamic System Model Classes (Linear and Nonlinear, Continuous and Discrete Time, State Space and Input Output, White Box and Black Box Models), Application of identification methods to several case studies. The lecture course will also review necessary concepts from the three fields Statistics, Optimization, and Systems Theory, where needed.

Examination achievement

see module details

Course achievement

see module details

Literature

- 1. Lecture manuscript
- 2. Ljung, L. (1999). System Identification: Theory for the User. Prentice Hall
- 3. Lecture manuscript "System Identification" by J

Compulsory requirement

None

#### Recommended requirement

Undergraduate knowledge in analysis, algebra, differential equations as well as in systems theory and feedback control.

| Name of module                                                                           | Number of module      |  |
|------------------------------------------------------------------------------------------|-----------------------|--|
| Modelling and System Identification                                                      | 11LE50MO-2080_PO 2020 |  |
| course                                                                                   |                       |  |
| Modellbildung und Systemidentifikation / Modelling and System Identification - Exercises |                       |  |
| Event type                                                                               | Number                |  |
| excercise course                                                                         | 11LE50Ü-2080          |  |
| Organizer                                                                                |                       |  |

Department of Microsystems Engineering, Systems Control and Optimization

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

| Contents                                                                                        |
|-------------------------------------------------------------------------------------------------|
| The exercises accompany the lecture content and are mostly computer exercises and case studies. |
| Examination achievement                                                                         |
| see module details                                                                              |
| Course achievement                                                                              |
| see module details                                                                              |
| Compulsory requirement                                                                          |
| none                                                                                            |
| Recommended requirement                                                                         |
| none                                                                                            |

 $\uparrow$ 

| Name of module                                            | Number of module      |
|-----------------------------------------------------------|-----------------------|
| Netzwerkalgorithmen / Network Algorithms                  | 11LE13MO-1313_PO 2020 |
| Responsible                                               | · · · ·               |
| Prof. Dr. Fabian Kuhn                                     |                       |
| Organizer                                                 |                       |
| Department of Computer Science, Algorithms and Complexity |                       |
| Faculty                                                   |                       |
| Faculty of Engineering                                    |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 2                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------|
| keine   none                                                                                                                         |
| Recommended requirement                                                                                                              |
| Basic knowledge in algorithm design/analysis, mathematical maturity (in particular, we use some graph theory and probability theory) |

| Assigned Courses                                        |                  |                    |      |     |                             |
|---------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                    | Туре             | C/E                | ECTS | HoW | Workload                    |
| Netzwerkalgorithmen / Network Algorithms<br>- Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 Stun-<br>den  <br>hours |
| Netzwerkalgorithmen / Network Algorithms<br>- Exercises | excercise course | Core elec-<br>tive |      | 1.0 |                             |

# Qualification

Networks and distributed computing are essential in modern computing and information systems. The objective of the course is to learn fundamental principles and mathematical/algorithmic techniques underlying the design of distributed algorithms for solving tasks in networks and distributed systems.

1

### Examination achievement

Klausur (i.d.R. 90 bis 180 Minuten) | Written exam (usually 90 to 180 minutes)

(Wenn die Teilnehmerzahl sehr klein ist, kann stattdessen eine mündliche Prüfung durchgeführt werden. Die Studierenden werden rechtzeitig informiert. |

If number of participants is small, might be changed to oral exam instead. Students will be notified in good time.)

Course achievement

keine | none

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)
- ↑

| Name of module                                            | Number of module      |  |  |  |
|-----------------------------------------------------------|-----------------------|--|--|--|
| Netzwerkalgorithmen / Network Algorithms                  | 11LE13MO-1313_PO 2020 |  |  |  |
| course                                                    |                       |  |  |  |
| Netzwerkalgorithmen / Network Algorithms - Lecture        |                       |  |  |  |
| Event type                                                | Number                |  |  |  |
| lecture course                                            | 11LE13V-1313          |  |  |  |
| Organizer                                                 |                       |  |  |  |
| Department of Computer Science, Algorithms and Complexity |                       |  |  |  |

Department of Computer Science, Algorithms and Complexity

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 39 Stunden                   |
| Independent study         | 128 Stunden                  |
| Hours of week             | 3.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

The topics are taught by going through many key example problems. Particular topics that are covered include: communication, coordination, fault-tolerance, locality, parallelism, self-organization, symmetry breaking, synchronization, uncertainty

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

Compulsory requirement

#### Recommended requirement

Basic knowledge in algorithm design/analysis, mathematical maturity (in particular, we use some graph theory and probability theory)

| Name of module Number of module                           |                       |  |  |  |
|-----------------------------------------------------------|-----------------------|--|--|--|
| Netzwerkalgorithmen / Network Algorithms                  | 11LE13MO-1313_PO 2020 |  |  |  |
| course                                                    |                       |  |  |  |
| Netzwerkalgorithmen / Network Algorithms - Exercises      |                       |  |  |  |
| Event type                                                | Number                |  |  |  |
| excercise course                                          | 11LE13Ü-1313          |  |  |  |
| Organizer                                                 |                       |  |  |  |
| Department of Computer Science, Algorithms and Complexity |                       |  |  |  |

ECTS-PointsAttendance13 StundenHours of week1.0Recommended semesterFrequencytakes place each summer termCompulsory/Elective (C/E)Core electiveLanguageenglish

| Contents                               |
|----------------------------------------|
|                                        |
| Examination achievement                |
| Siehe Modulebene  <br>See module level |
| Course achievement                     |
| Siehe Modulebene  <br>See module level |
| Compulsory requirement                 |
|                                        |
| $\uparrow$                             |

| Name of module                                                       | Number of module      |
|----------------------------------------------------------------------|-----------------------|
| Numerical Optimal Control in Science and Engineering                 | 11LE50MO-5249_PO 2020 |
| Responsible                                                          |                       |
| Prof. Dr. Moritz Diehl                                               |                       |
| Organizer                                                            |                       |
| Department of Microsystems Engineering, Systems Control and Optimiza | ation                 |
| Faculty                                                              |                       |
| Faculty of Engineering                                               |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 2                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement |
|------------------------|
|------------------------|

None

Recommended requirement

Mathematics 1 and 2 for Engineers or basic Linear Algebra and Calculus courses. Numerical Optimization (NUMOPT), Modelling and System Identification (MSI), Systems and Control Bachelor or Master lectures.

| Assigned Courses                                     |                  |                    |      |     |           |
|------------------------------------------------------|------------------|--------------------|------|-----|-----------|
| Name                                                 | Туре             | C/E                | ECTS | HoW | Workload  |
| Numerical Optimal Control in Science and Engineering | lecture course   | Core elec-<br>tive | 6.0  | 6.0 | 180 hours |
| Numerical Optimal Control in Science and Engineering | excercise course | Core elec-<br>tive |      | 2.0 |           |

Qualification

The students can formulate optimal control problems and implement and analyze several numerical methods for solving them.

Examination achievement

Written exam (180 minutes)

Course achievement

The course work is completed if students pass the mid-term online quiz.

# Usability

Compulsory elective module for students of the study program

- M.Sc. Microsystems Engineering (PO 2021), Concentration Circuits and Systems
- M.Sc.Mikrosystemtechnik (PO 2021), Vertiefung Schaltungen und Systeme
- M.Sc. Embedded Systems Engineering (PO 2021), Concentration Circuits and Systems OR in Elective Courses in Computer Science
- M.Sc. Informatik / Computer Science (PO 2020), in Spezialvorlesung | Specialization Courses

Part of the specialization Cyber-Physical Systems in Master of Science Informatik/Computer Science bzw. MSc Embedded Systems Engineering

### Important note for M.Sc. Informatik / Computer Science:

This module is available as both

- a specialization lecture in Computer Science (with a graded assessment / Prüfungsleistung)
- as a course in the application area Applied Bioinformatics (as pass/fail course / Studienleistung) (see according module in online module handbook / planner of studies)

Take care during the booking process, as that will define the category in which the course is considered. **You can't change the category afterwards!** So, you can't change it from PL to SL or vice versa.

Wahlpflichtmodul für Studierende des Studiengangs

M.Ed. Informatik (PO 2018)

Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                       | Number of module      |  |
|------------------------------------------------------|-----------------------|--|
| Numerical Optimal Control in Science and Engineering | 11LE50MO-5249_PO 2020 |  |
| course                                               |                       |  |
| Numerical Optimal Control in Science and Engineering |                       |  |
| Event type                                           | Number                |  |
| lecture course                                       | 11LE50V-5249          |  |
| Organizer                                            |                       |  |

Department of Microsystems Engineering, Systems Control and Optimization

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 hours                    |
| Attendance                | 78 hours                     |
| Independent study         | 102 hours                    |
| Hours of week             | 6.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

### Contents

- Introduction: Dynamic Systems and Optimization
- Rehearsal of Numerical Optimization
- Rehearsal of Parameter Estimation
- Discrete Time Optimal Control
- Dynamic Programming
- Continuous Time Optimal Control
- Numerical Simulation Methods
- Hamilton-Jacobi-Bellmann Equation
- Pontryagin and the Indirect Approach
- Direct Optimal Control
- Differential Igebraic Equations
- Periodic Optimal Control
- Real-Time Optimization for Model Predictive Control

#### Examination achievement

see module details

Course achievement

see module details

Literature

- 1. Manuscript "Numerical Optimal Control" by M. Diehl and S. Gros
- 2. Biegler, L.T., Nonlinear Programming, SIAM, 2010

# Compulsory requirement

None

### Recommended requirement

Mathematics 1 and 2 for Engineers or basic Linear Algebra and Calculus courses. Numerical Optimization (NUMOPT), Modelling and System Identification (MSI), Systems and Control Bachelor or Master lectures.

| Name of module                                       | Number of module      |  |  |
|------------------------------------------------------|-----------------------|--|--|
| Numerical Optimal Control in Science and Engineering | 11LE50MO-5249_PO 2020 |  |  |
| course                                               |                       |  |  |
| Numerical Optimal Control in Science and Engineering |                       |  |  |
| Event type                                           | Number                |  |  |
| excercise course                                     | 11LE50Ü-5249          |  |  |
| Organizer                                            |                       |  |  |

Department of Microsystems Engineering, Systems Control and Optimization

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

#### Contents

In the tutorial, the contents of the lecture will be deepened by means of theoretical examples and computer exercises.

Examination achievement

see moodule details

Course achievement

see module details

Compulsory requirement

None

↑

Recommended requirement

Mathematics 1 and 2 for Engineers or basic Linear Algebra and Calculus courses. Numerical Optimization (NUMOPT), Modelling and System Identification (MSI), Systems and Control Bachelor or Master lectures.

| Name of module                                                           | Number of module      |  |  |
|--------------------------------------------------------------------------|-----------------------|--|--|
| Numerical Optimization                                                   | 11LE50MO-5243_PO 2020 |  |  |
| Responsible                                                              |                       |  |  |
| Prof. Dr. Moritz Diehl                                                   |                       |  |  |
| Organizer                                                                |                       |  |  |
| Department of Microsystems Engineering, Systems Control and Optimization |                       |  |  |
| Faculty                                                                  |                       |  |  |
| Faculty of Engineering                                                   |                       |  |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 3                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

| Compulsory requirement                                                         |  |
|--------------------------------------------------------------------------------|--|
| none                                                                           |  |
| Recommended requirement                                                        |  |
| Mathematics 1 and 2 for Engineers or basic Linear Algebra and Calculus courses |  |

| Assigned Courses                                                 |                  |                    |      |     |           |
|------------------------------------------------------------------|------------------|--------------------|------|-----|-----------|
| Name                                                             | Туре             | C/E                | ECTS | HoW | Workload  |
| Numerische Optimierung / Numerical Opti-<br>mization - Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 4.0 | 180 hours |
| Numerische Optimierung / Numerical Opti-<br>mization - Exercises | excercise course | Core elec-<br>tive |      | 2.0 |           |

| Qualification                                                                                                                                                         |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| The students know different types of optimization problems and can discuss their theoretical background and implement and analyze numerical methods for solving them. |  |
| Examination achievement                                                                                                                                               |  |
| Written exam (180 minutes)                                                                                                                                            |  |
| Course achievement                                                                                                                                                    |  |
| The course work is completed if students pass the mid-term online quiz.                                                                                               |  |

# Usability

Compulsory elective module for students of the study program

- M.Sc. Embedded Systems Engineering (ESE) (PO 2021) in Elective Courses in Computer Science
- M.Sc. Microsystems Engineering in Microsystems Engineering (PO 2021) Concentrations Area: Circuits and Systems
- M.Sc. Informatik / Computer Science (PO 2020), in Spezialvorlesung | Specialization Courses

Part of the specialization Cyber-Physical Systems in Master of Science Informatik/Computer Science bzw. MSc Embedded Systems Engineering

# Important note for M.Sc. Informatik / Computer Science:

This module is available as both

- a specialization lecture in Computer Science (with a graded assessment / Prüfungsleistung)
- as a course in the application area Applied Bioinformatics (as pass/fail course / Studienleistung) (see according module in online module handbook / planner of studies)

Take care during the booking process, as that will define the category in which the course is considered. **You can't change the category afterwards!** So, you can't change it from PL to SL or vice versa.

Wahlpflichtmodul für Studierende des Studiengangs

- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                            | Number of module      |  |
|-----------------------------------------------------------|-----------------------|--|
| Numerical Optimization                                    | 11LE50MO-5243_PO 2020 |  |
| course                                                    |                       |  |
| Numerische Optimierung / Numerical Optimization - Lecture |                       |  |
| Event type                                                | Number                |  |
| lecture course                                            | 11LE50V-5243          |  |
| Organizer                                                 |                       |  |

Department of Microsystems Engineering, Systems Control and Optimization

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 hours                    |
| Attendance                | 90 hours                     |
| Independent study         | 90 hours                     |
| Hours of week             | 4.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

The course is divided into four major parts:

- 1. Fundamental Concepts of Optimization: Definitions, Types, Convexity, Duality
- 2. Unconstrained Optimization and Newton Type Algorithms: Stability of Solutions, Gradient and Conjugate Gradient, Exact Newton, Quasi-Newton, BFGS and Limi- ted Memory BFGS, and Gauss-Newton, Line Search and Trust Region Methods, Algorithmic Differentiation
- 3. Equality Constrained Optimization Algorithms: Newton Lagrange and Generalized Gauss-Newton, Range and Null Space Methods, Quasi-Newton and Adjoint Based Inexact Newton Methods
- Inequality Constrained Optimization Algorithms: Karush-Kuhn-Tucker Conditions, Linear and Quadratic Programming, Active Set Methods, Interior Point Methods, Se- quential Quadratic and Convex Programming, Quadratic and Nonlinear Parametric Optimization

Examination achievement

see module details

Course achievement

see module details

Literature

- 1. Jorge Nocedal and Stephen J. Wright, Numerical Optimization, Springer, 2006
- 2. Amir Beck, Introduction to Nonlinear Optimization, MOS-SIAM Optimization, 2014
- 3. Stephen Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge Univ. Press, 2004

### Compulsory requirement

None
Recommended requirement

Mathematics 1 and 2 for Engineers or basic Linear Algebra and Calculus courses

| Name of module                                              | Number of module      |
|-------------------------------------------------------------|-----------------------|
| Numerical Optimization                                      | 11LE50MO-5243_PO 2020 |
| course                                                      |                       |
| Numerische Optimierung / Numerical Optimization - Exercises |                       |
| Event type                                                  | Number                |
| excercise course                                            | 11LE50Ü-5243          |
| Organizer                                                   |                       |

Department of Microsystems Engineering, Systems Control and Optimization

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

In der Übung werden die Inhalte der Vorlesung anhand theoretischer Beispielaufgaben sowie mit Rechnerübungen vertieft.

Examination achievement

see module details

Course achievement

see module details

Compulsory requirement

None

Recommended requirement

Mathematics 1 and 2 for Engineers or basic Linear Algebra and Calculus courses

| Name of module                                                   | Number of module      |  |
|------------------------------------------------------------------|-----------------------|--|
| Peer-to-Peer Netzwerke / Peer-to-Peer Networks                   | 11LE13MO-1314_PO 2020 |  |
| Responsible                                                      |                       |  |
| Prof. Dr. Christian Schindelhauer                                |                       |  |
| Organizer                                                        |                       |  |
| Department of Computer Science, Computer Networks and Telematics |                       |  |
| Faculty                                                          |                       |  |
| Faculty of Engineering                                           |                       |  |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 2                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------|
| keine   none                                                                                                            |
| Recommended requirement                                                                                                 |
| Basic knowledge in algorithms and data structures, computer networks, telecommunication systems and distributed systems |

| Assigned Courses                                                |                  |                    |      |     |                             |
|-----------------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                            | Туре             | C/E                | ECTS | HoW | Workload                    |
| Peer-to-Peer Netzwerke / Peer-to-Peer Net-<br>works - Lecture   | lecture course   | Core elec-<br>tive |      | 2.0 | 180 Stun-<br>den  <br>hours |
| Peer-to-Peer Netzwerke / Peer-to-Peer Net-<br>works - Exercises | excercise course | Core elec-<br>tive |      | 2.0 | 180 Stun-<br>den  <br>hours |

| Qualification                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Students know the underlying methods and algorithms for peer-to-peer network architectures.<br>They know and can apply different methods for storing, resulting in various networks for different purposes. |
| They understand the application of cryptographic methods to peer-to-peer networks, especially Block-chain                                                                                                   |
| technology. Students have knowledge about self-organizing networks, allowing for the use of repair mecha-                                                                                                   |

nisms of peer-to-peer networks under churn and attacks.

Examination achievement

mündliche Prüfung (i.d.R. 30 oder 45 Minuten) | Oral exam (usually 30 or 45 minutes)

| Course achievement                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| keine   none                                                                                                                                                                                                                                                                                                                                                         |
| Usability                                                                                                                                                                                                                                                                                                                                                            |
| <ul> <li>Wahlpflichtmodul für Studierende des Studiengangs</li> <li>B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik</li> <li>B.Sc. in Informatik (PO 2018)</li> <li>polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)</li> <li>M.Ed. Informatik (PO 2018)</li> <li>Master of Education Erweiterungsfach Informatik (PO 2021)</li> </ul> |
| Compulsory elective module for students of the study program                                                                                                                                                                                                                                                                                                         |

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

| Name of module                                                   | Number of module      |
|------------------------------------------------------------------|-----------------------|
| Peer-to-Peer Netzwerke / Peer-to-Peer Networks                   | 11LE13MO-1314_PO 2020 |
| course                                                           |                       |
| Peer-to-Peer Netzwerke / Peer-to-Peer Networks - Lecture         |                       |
| Event type                                                       | Number                |
| lecture course                                                   | 11LE13V-1314          |
| Organizer                                                        |                       |
| Department of Computer Science, Computer Networks and Telemetics |                       |

Department of Computer Science, Computer Networks and Telematics

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Attendance                | 32 Stunden                      |
| Independent study         | 116 Stunden                     |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

## Contents

After a brief introduction to the history of peer-to-peer networks relevant topics related to the Internet and distributed systems are deepened. First, the example of unstructured networks Gnutella are discussed, followed by structured networks. These, e.g. such as CAN, Chord, Pastry and Tapestry, are presented in very detail. We concentrate on data and network structures, as well the theoretical analysis of peer-to-peer networks. Other issues are minimal networks, networks with tree structures and self-organizing networks. As special issues we discuss security, anonymity and game theory in peer-to-peer networks

### Examination achievement

Siehe Modulebene | See module level

#### Course achievement

Siehe Modulebene | See module level

#### Literature

Mahlmann, Schindelhauer: Peer-to-Peer-Netzwerke - Methoden und Algorithmen, Springer 2007
 Shen, X.; Yu, H.; Buford, J.; Akon, M. (Eds.): Handbook of Peer-to-Peer Networking, Springer 2010

### Compulsory requirement

keine | none

### **Recommended requirement**

Basic knowledge in algorithms and data structures, computer networks, telecommunication systems and distributed systems

| Name of module                                                   | Number of module      |
|------------------------------------------------------------------|-----------------------|
| Peer-to-Peer Netzwerke / Peer-to-Peer Networks                   | 11LE13MO-1314_PO 2020 |
| course                                                           |                       |
| Peer-to-Peer Netzwerke / Peer-to-Peer Networks - Exercises       |                       |
| Event type                                                       | Number                |
| excercise course                                                 | 11LE13Ü-1314          |
| Organizer                                                        |                       |
| Department of Computer Science, Computer Networks and Telemetics |                       |

Department of Computer Science, Computer Networks and Telematics

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Attendance                | 32 Stunden                      |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

| ontents                            |
|------------------------------------|
|                                    |
| xamination achievement             |
| ee module level                    |
| ourse achievement                  |
| ee modulebene  <br>ee module level |
| ompulsory requirement              |
|                                    |
|                                    |

| Name of module                                                 | Number of module     |  |  |
|----------------------------------------------------------------|----------------------|--|--|
| Probabilistic Graphical Models                                 | 11E13MO-1228_PO 2020 |  |  |
| Responsible                                                    |                      |  |  |
| Prof. Dr. Joschka Bödecker                                     |                      |  |  |
| Organizer                                                      |                      |  |  |
| Department of Computer Science, Professorship in Neurorobotics |                      |  |  |
| Faculty                                                        |                      |  |  |
| Faculty of Engineering                                         |                      |  |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden / houers         |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

| Compulsory requirement                                                                                               |
|----------------------------------------------------------------------------------------------------------------------|
| keine / none                                                                                                         |
| Recommended requirement                                                                                              |
| Prior knowledge of probability theory, machine learning, deep learning, reinforcement learning is an advan-<br>tage. |

| Assigned Courses               |                  |                    |      |     |                             |
|--------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                           | Туре             | C/E                | ECTS | HoW | Workload                    |
| Probabilistic Graphical Models | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 Stun-<br>den /<br>hours |
| Probabilistic Graphical Models | excercise course | Core elec-<br>tive |      | 1.0 |                             |

Qualification

Students understand the concepts of probabilistic graphical models, including the mathematical foundations, representation, structure, inference, learning, identifying causal relations, as well as connections to deep learning and control. They are able to apply these methods to practical modeling and control problems from various domains of science and engineering.

Examination achievement

Klausur / written exam

Course achievement

Bearbeitung von Übungsblättern / Completing excercise assignments

# Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering **and** 

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

| Name of module                 | Number of module     |
|--------------------------------|----------------------|
| Probabilistic Graphical Models | 11E13MO-1228_PO 2020 |
| course                         |                      |
| Probabilistic Graphical Models |                      |
| Event type                     | Number               |
| lecture course                 | 11E13V-1228_PO 2020  |
| Organizer                      |                      |

Department of Computer Science, Professorship in Neurorobotics

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden / hours          |
| Attendance                | 48 Stunden / hours           |
| Independent study         | 116 Stunden / Hours          |
| Hours of week             | 3.0                          |
| Recommended semester      | 1                            |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

Lectures will cover: Introduction, Review of fundamental concepts from probability and graph theory, Bayesian classifiers, Hidden Markov Models, Bayesian Networks, Extension to dynamic and temporal variants, Decision Graphs, Markov Decision Processes, Control as Inference, Graphical Causal Models, Causal Discovery, Deep Learning and Graphical Models

**Examination achievement** 

See module level

### Course achievement

See module level

## Literature

"Probabilistic Graphical Models: Principles and Applications", second edition, by Luis Enrique Sucar, Springer Nature Switzerland, https://doi.org/10.1007/978-3-030-61943-5

Compulsory requirement

keine / none

### Recommended requirement

Prior knowledge of probability theory, machine learning, deep learning, reinforcement learning is an advantage.

| Name of module                 | Number of module     |
|--------------------------------|----------------------|
| Probabilistic Graphical Models | 11E13MO-1228_PO 2020 |
| course                         |                      |
| Probabilistic Graphical Models |                      |
| Event type                     | Number               |
| excercise course               | 11E13Ü-1228_PO 2020  |
| Organizer                      |                      |

Department of Computer Science, Professorship in Neurorobotics

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Hours of week             | 1.0                          |
| Recommended semester      | 1                            |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

Theoretical and coding-based exercises in Python will accompany the lectures to help deepen the understanding of concepts from lectures, as well as provide the opportunity to gain some hands-on experience in applying the methods to solve selected problems.

Examination achievement

See module level

Course achievement

See module level

↑

Compulsory requirement

| Name of module                                                 | Number of module      |
|----------------------------------------------------------------|-----------------------|
| Reinforcement Learning                                         | 11LE13MO-1141_PO 2020 |
| Responsible                                                    |                       |
| Prof. Dr. Joschka Bödecker                                     |                       |
| Organizer                                                      |                       |
| Department of Computer Science, Professorship in Neurorobotics |                       |
| Faculty                                                        |                       |
| Faculty of Engineering                                         |                       |

| ECTS-Points               | 6.0                 |
|---------------------------|---------------------|
| Workload                  | 180 Stunden   hours |
| Hours of week             | 4.0                 |
| Recommended semester      | 1                   |
| Duration                  | 1 Semester          |
| Compulsory/Elective (C/E) | Core elective       |

Compulsory requirement

keine | none

Recommended requirement

Grundlagenkenntnisse in praktischer und angewandter Informatik, Algorithmen und Datenstrukturen, Programmierkenntnisse

Grundlagenwissen zu Künstlicher Intelligenz und Machine Learning

Basic knowledge of practical and applied computer science, algorithms and data structures, programming skills

Basic knowledge of artificial intelligence and machine learning

| Assigned Courses       |                  |                    |      |     |                             |
|------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                   | Туре             | C/E                | ECTS | HoW | Workload                    |
| Reinforcement Learning | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 Stun-<br>den  <br>hours |
| Reinforcement Learning | excercise course | Core elec-<br>tive |      | 1.0 |                             |

## Qualification

- Verständnis der grundlegenden Konzepte des optimierenden Lernes
- Fähigkeit des Denkens auf unterschiedlichen Abstraktionsebenen
- Kenntnis in exemplarischen Umsetzungen von Lernalgorithmen
- Fähigkeit zum selbständigen Erkennen von Zusammenhängen der vorgestellten Konzepte
- Kenntnisse in der praktischen Anwendung
- Τ
- Understanding the basic concepts of optimizing learning

- Ability to think on different levels of abstraction
- Knowledge of exemplary implementations of learning algorithms
- Ability to independently recognize connections between the presented concepts
- Knowledge of practical application

Examination achievement

mündliche Prüfung (i.d.R. 30 oder 45 Minuten) | Oral exam (usually 30 or 45 minutes)

(Wenn die Teilnehmerzahl sehr groß ist, kann stattdessen eine schriftliche Prüfung (i.d.R. 90 bis 180 Minuten) durchgeführt werden. Die Studierenden werden rechtzeitig informiert.

If number of participants is very high, might be exceptionally changed to written examination (usually 90 to 180 minutes) instead. Students will be notified in good time.)

Course achievement

keine | none

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                                 | Number of module      |
|----------------------------------------------------------------|-----------------------|
| Reinforcement Learning                                         | 11LE13MO-1141_PO 2020 |
| course                                                         |                       |
| Reinforcement Learning                                         |                       |
| Event type                                                     | Number                |
| lecture course                                                 | 11LE13V-1141          |
| Organizer                                                      |                       |
| Department of Computer Science, Professorship in Neurorobotics |                       |

| ECTS-Points       | 6.0                 |
|-------------------|---------------------|
| Workload          | 180 Stunden   hours |
| Attendance        | 45 Stunden          |
| Independent study | 120 Stunden         |
| Hours of wook     | 3.0                 |

| Hours of week             | 3.0                          |
|---------------------------|------------------------------|
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

The lecture deals with methods of Reinforcement Learning that constitute an important class of machine learning algorithms. Starting with the formalization of problems as Markov decision processes, a variety of Reinforcement Learning methods are introduced and discussed in-depth. The connection to practice-oriented problems is established by basing the lecture on many examples.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

Literature

Sutton, Barton: Reinforcement Learning – An Introduction. Bertsimas: Neuron Dynamic Programming.

Compulsory requirement

keine | none

**Recommended requirement** 

Grundlagenkenntnisse in praktischer und angewandter Informatik, Algorithmen und Datenstrukturen, Programmierkenntnisse

Grundlagenwissen zu Künstlicher Intelligenz und Machine Learning

Basic knowledge of practical and applied computer science, algorithms and data structures, programming skills

Basic knowledge of artificial intelligence and machine learning

| Name of module                                | Number of module      |
|-----------------------------------------------|-----------------------|
| Reinforcement Learning                        | 11LE13MO-1141_PO 2020 |
| course                                        |                       |
| Reinforcement Learning                        |                       |
| Event type                                    | Number                |
| excercise course                              | 11LE13Ü-1141          |
| Organizer                                     |                       |
| Department of Computer Science, Brofessorship | in Neuropelation      |

Department of Computer Science, Professorship in Neurorobotics

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 15 Stunden                   |
| Hours of week             | 1.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

#### Contents

In the exercises, students will learn through example scenarios to apply the principles and methods from the lectures.

Examination achievement

Siehe Modulebene | See module level

### Course achievement

Siehe Modulebene | See module level

Compulsory requirement

 $\uparrow$ 

| ame of module Number of module                 |                       |  |
|------------------------------------------------|-----------------------|--|
| RNA Bioinformatik / RNA Bioinformatics         | 11LE13MO-1318_PO 2020 |  |
| Responsible                                    |                       |  |
| Prof. Dr. Rolf Backofen                        |                       |  |
| Organizer                                      |                       |  |
| Department of Computer Science, Bioinformatics |                       |  |
| Faculty                                        |                       |  |
| Faculty of Engineering                         |                       |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 2                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

| Compulsory requirement |
|------------------------|
|------------------------|

keine | none

Recommended requirement

Fundamental understanding of RNA sequence/structure analysis Knowledge about principle methods used in Bioinformatics

| Assigned Courses                                     |                  |                    |      |     |                             |
|------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                 | Туре             | C/E                | ECTS | HoW | Workload                    |
| RNA Bioinformatik / RNA Bioinformatics -<br>Lecture  | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| RNA Bioinformatik / RNA Bioinformatics-<br>Exercises | excercise course | Core elec-<br>tive |      | 2.0 |                             |

## Qualification

The goal of this module is to get a deeper understanding of the essential algorithms and methods for RNA sequence/structure analysis going beyond the topics covered in Bioinformatics 1 and 2. Students will learn about fundamental algorithms and methods for sequence and structure analysis of the biological macromolecule RNA.

Students will be able to predict optimal RNA secondary structure and to explain the methods. At the end of the course, they can use probabilistic analysis of structure by partition function approaches, and thus compute base pair probabilities. Furthermore, participants will be able to compare and align RNAs according to their sequence and structural information. This will be possible using techniques for the alignment of folded RNA as well as for the simultaneous operations of alignment and folding. As special topics, students will be able to explain fundamental concepts of and methods for RNA-RNA-interaction prediction, as well as the algorithmic treatment of pseudoknots.

Examination achievement

Klausur (i.d.R. 90 bis 180 Minuten) | Written exam (usually 90 to 180 minutes)

(Wenn die Teilnehmerzahl gering ist, kann stattdessen eine mündliche Prüfung durchgeführt werden. Die Studierenden werden rechtzeitig informiert.)

(If number of participants is small, might be changed to oral exam instead. Students will be notified in good time.)

Course achievement

keine | none

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Biomedical Engineering (BE) in M.Sc. Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                   | Number of module      |
|--------------------------------------------------|-----------------------|
| RNA Bioinformatik / RNA Bioinformatics           | 11LE13MO-1318_PO 2020 |
| course                                           |                       |
| RNA Bioinformatik / RNA Bioinformatics - Lecture |                       |
| Event type                                       | Number                |
| lecture course                                   | 11LE13V-1318          |
| Organizer                                        |                       |
| Department of Computer Science, Bioinformatics   |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 26 Stunden                   |
| Independent study         | 128 Stunden                  |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

## Introduction

Structure prediction

- Nussinov algorithm
- Zuker algorithm
- McCaskill algorithm

Comparative RNA analysis:

- Plan A: first align, then fold
- Plan C: first fold, then align
- Plan B: simultaneous alignment and folding

Overview of RNA related tasks and algorithms

- RNA-RNA interactions
- Pseudoknot prediction Eddy algorithm
- Binding sites of RNA-binding proteins

### Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

| Literature                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Clote, Backofen: Computational Molecular Biologie, An Introduction. Wiley &amp; Sons. ISBN-10:<br/>0471872520 ISBN-13: 978-0471872528</li> <li>Durbin et al. Biological Sequence Analysis. Cambridge University Press. ISBN-10: 0521629713<br/>ISBN-13: 978-0521629713</li> </ul> |
| Compulsory requirement                                                                                                                                                                                                                                                                     |
| keine   none                                                                                                                                                                                                                                                                               |

Recommended requirement

Fundamental understanding of RNA sequence/structure analysis Knowledge about principle methods used in Bioinformatics

| Name of module Number of module                   |                       |  |
|---------------------------------------------------|-----------------------|--|
| RNA Bioinformatik / RNA Bioinformatics            | 11LE13MO-1318_PO 2020 |  |
| course                                            |                       |  |
| RNA Bioinformatik / RNA Bioinformatics- Exercises |                       |  |
| Event type                                        | Number                |  |
| excercise course                                  | 11LE13Ü-1318          |  |
| Organizer                                         |                       |  |
| Department of Computer Science, Bioinformatics    |                       |  |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 26 Stunden                   |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

| <u>_</u> |     |     |
|----------|-----|-----|
| 1.0      | nte | nts |
|          |     |     |

In the exercises, students will learn through example scenarios to apply the principles and methods from the lectures.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

Compulsory requirement

| Name of module                                                         | Number of module      |
|------------------------------------------------------------------------|-----------------------|
| Robot Mechanics                                                        | 11LE13MO-5727 PO 2021 |
| Responsible                                                            |                       |
| JProf. Dr. Edoardo Milana                                              |                       |
| Organizer                                                              |                       |
| Department of Microsystems Engineering, Professorship in Soft Machines |                       |
| Faculty                                                                |                       |
| Faculty of Engineering                                                 |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 90 Stunden   hours           |
| Hours of week             | 2.0                          |
| Recommended semester      | 2                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

| Compulsory requirement                       |
|----------------------------------------------|
| keine   none                                 |
| Recommended requirement                      |
| Foundations in mechanics, calculus, geometry |

| Assigned Courses |                  |                    |      |     |                            |
|------------------|------------------|--------------------|------|-----|----------------------------|
| Name             | Туре             | C/E                | ECTS | HoW | Workload                   |
| Robot Mechanics  | lecture course   | Core elec-<br>tive | 3.0  | 2.0 | 90 Stun-<br>den  <br>hours |
| Robot Mechanics  | excercise course | Core elec-<br>tive |      | 2.0 |                            |

## Qualification

This course provides students with the knowledge and tools needed to model and analyze robotic manipulators, with an emphasis on mechanical performance. Students will learn how to analyze robotic systems, model their kinematics and dynamics, and design manipulators based on operational requirements. Application of this knowledge includes designing, modeling, and evaluating robots using real-world examples. Students demonstrate their understanding by presenting real-world use cases and demonstrate their ability to select and evaluate robot types for specific manipulation tasks.

Examination achievement

Klausur | written exam

Course achievement

keine | none

## Usability

Compulsory elective module for students of the study program

- M.Sc. Embedded Systems Engineering (ESE) (2021) in Microsystems Engineering Concentrations Area Materials and Fabrication
- M.Sc. Microsystems Engineering (PO 2021), Concentration Materials and Fabrication
- M.Sc.Mikrosystemtechnik (PO 2021), Vertiefung Materialien und Herstellungsprozesse
- M.Sc. in Sustainable Systems Engineering (PO 2021), Interdisciplinary Profile
- M.Sc. Informatik / Computer Science (PO 2020), in Spezialvorlesung | Specialization Courses

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

| I |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

| Name of module  | Number of module      |
|-----------------|-----------------------|
| Robot Mechanics | 11LE13MO-5727 PO 2021 |
| course          |                       |
| Robot Mechanics |                       |
| Event type      | Number                |
| lecture course  | 11LE50V-5727 PO 2021  |
| Organizer       |                       |

Department of Microsystems Engineering, Professorship in Soft Machines

| ECTS-Points               | 3.0                          |
|---------------------------|------------------------------|
| Workload                  | 90 Stunden   hours           |
| Attendance                | 64 Stunden   hours           |
| Independent study         | 26 Stunden   hours           |
| Hours of week             | 2.0                          |
| Recommended semester      | 2                            |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

Kinematic chains, joints, mobility, types of manipulators, reference frames, forward kinematics, inverse kinematics, Jacobian, trajectory planning, dynamics

### Qualification

This course provides students with the knowledge and tools needed to model and analyze robotic manipulators, with an emphasis on mechanical performance. Students will learn how to analyze robotic systems, model their kinematics and dynamics, and design manipulators based on operational requirements. Application of this knowledge includes designing, modeling, and evaluating robots using real-world examples. Students demonstrate their understanding by presenting real-world use cases and demonstrate their ability to select and evaluate robot types for specific manipulation.

Examination achievement

siehe Moduleebene | see module level

Course achievement

siehe Moduleebene | see module level

Literature

Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani, and Giuseppe Oriolo. 2008. Robotics: Modelling, Planning and Control (1st. ed.). Springer Publishing Company, Incorporated.

Compulsory requirement

keine | none

### **Recommended requirement**

Foundations in mechanics, calculus, geometry

| Name of module   | Number of module      |
|------------------|-----------------------|
| Robot Mechanics  | 11LE13MO-5727 PO 2021 |
| course           |                       |
| Robot Mechanics  |                       |
| Event type       | Number                |
| excercise course | 11LE50Ü-5727 PO 2021  |
| Organizer        |                       |

Department of Microsystems Engineering, Professorship in Soft Machines

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

The exercises will reinforce the lecture material through practical sample problems. The lecture includes the theoretical framework of Robot Mechanics, whereas the exercise session provides the students with the possibility to apply their acquired knowledge to solve applied problems, such as calculating the number of degrees of freedom of a rigid-body mechanism, to compute rotation matrices and to solve direct kinematics of planar/3D robots. Exercise problems are not graded and do not count for the final course grade, they are meant to help the students preparing for the final exam.

Examination achievement

siehe Modulebene | see module level

Course achievement

↑

siehe Modulebene | see module level

Compulsory requirement

| Name of module                                        | Number of module      |
|-------------------------------------------------------|-----------------------|
| SAT Solving                                           | 11LE13MO-1165_PO 2020 |
| Responsible                                           |                       |
| Prof. Dr. Armin Biere                                 |                       |
| Organizer                                             |                       |
| Department of Computer Science, Computer Architecture |                       |
| Faculty                                               |                       |
| Faculty of Engineering                                |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 2                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

| Compulsory requirement  |
|-------------------------|
| none                    |
| Recommended requirement |
| none                    |

| Assigned Courses |                  |                    |      |     |                             |
|------------------|------------------|--------------------|------|-----|-----------------------------|
| Name             | Туре             | C/E                | ECTS | HoW | Workload                    |
| SAT Solving      | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 Stun-<br>den  <br>hours |
| SAT Solving      | excercise course | Core elec-<br>tive |      | 1.0 |                             |

| Qualification                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Proficiency in applying and developping state-of-the-art algorithms for solving propositional satisfiability pro-<br>blems (SAT).                                                                                                                                                                                                    |
| Examination achievement                                                                                                                                                                                                                                                                                                              |
| mündliche Prüfung (i.d.R. 30 oder 45 Minuten)  <br>Oral exam (usually 30 or 45 minutes)                                                                                                                                                                                                                                              |
| Course achievement                                                                                                                                                                                                                                                                                                                   |
| You have to complete and hand in your solutions for exercise sheets/projects and perform experiments on a regular basis. These will be scored and awarded with points. To successfully complete the course work (Studienleistung), you need to have reachedat least 50% of the overall number of achievable points for the semester. |

# Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- ↑

| Name of module                                        | Number of module      |
|-------------------------------------------------------|-----------------------|
| SAT Solving                                           | 11LE13MO-1165_PO 2020 |
| course                                                |                       |
| SAT Solving                                           |                       |
| Event type                                            | Number                |
| lecture course                                        | 11LE13V-1165          |
| Organizer                                             |                       |
| Department of Computer Science, Computer Architecture |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 41 Stunden   hours           |
| Independent study         | 126 Stunden   hours          |
| Hours of week             | 3.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

- Encoding: NNF, Tseitin, AIGs, cardinality constrains encoding, bit-blasting.

- Preprocessing: DP, BVE, BVA, blocked clauses, autarkies, Stalmarck, Recursive Learning, clause redundancy, probing.

- Solving: DPLL, CDCL, learning, implication graph, failed literals, UIP, clause minimization, restarts, clause reduction.

**Examination achievement** 

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

Compulsory requirement

none

**Recommended requirement** 

none

| Name of module   | Number of module      |
|------------------|-----------------------|
| SAT Solving      | 11LE13MO-1165_PO 2020 |
| course           |                       |
| SAT Solving      |                       |
| Event type       | Number                |
| excercise course | 11LE13Ü-1165          |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 13 Stunden   hours           |
| Hours of week             | 1.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

| Contents                               |
|----------------------------------------|
|                                        |
| Examination achievement                |
| Siehe Modulebene  <br>See module level |
| Course achievement                     |
| Siehe Modulebene  <br>See module level |
| Compulsory requirement                 |
|                                        |
|                                        |

| Name of module                                    | Number of module      |
|---------------------------------------------------|-----------------------|
| Simulation in Computer Graphics                   | 11LE13MO-1113_PO 2020 |
| Responsible                                       |                       |
| Prof. DrIng. Matthias Teschner                    |                       |
| Organizer                                         |                       |
| Department of Computer Science, Computer Graphics |                       |
| Faculty                                           |                       |
| Faculty of Engineering                            |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 3                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

### Compulsory requirement

keine | none

Recommended requirement

Programming Skills

Knowledge in Algorithms and Data Structures, Linear Algebra and Analysis

| Assigned Courses                                                            |                  |                    |      |     |                             |
|-----------------------------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                                        | Туре             | C/E                | ECTS | HoW | Workload                    |
| Simulation in Computergraphik / Simulation in Computer Graphics - Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Simulation in Computergraphik / Simulation in Computer Graphics - Exercises | excercise course | Core elec-<br>tive |      | 2.0 |                             |

## Qualification

The module offers insights into physically-based animation techniques. Various models, numerical techniques, data structures and algorithms for rigid or deformable solids and for fluids are covered. The students learn a variety of relevant techniques. They also learn how to combine, e.g., fluids and solids in animation frameworks.

1

Examination achievement

mündliche Prüfung (i.d.R. 30 oder 45 Minuten) | Oral exam (usually 30 or 45 minutes)

(Wenn die Teilnehmerzahl groß ist, kann stattdessen eine schriftliche Prüfung durchgeführt werden. Die Studierenden werden rechtzeitig informiert. |

If number of participants is high, might be exceptionally changed to written examination instead. Students will be notified in good time.)

Course achievement

keine | none

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

 $\uparrow$ 

| Name of module                                                            | Number of module      |  |  |
|---------------------------------------------------------------------------|-----------------------|--|--|
| Simulation in Computer Graphics                                           | 11LE13MO-1113_PO 2020 |  |  |
| course                                                                    |                       |  |  |
| Simulation in Computergraphik / Simulation in Computer Graphics - Lecture |                       |  |  |
| Event type                                                                | Number                |  |  |
| lecture course                                                            | 11LE13V-1113          |  |  |
| Organizer                                                                 |                       |  |  |
| Department of Computer Science, Computer Graphics                         |                       |  |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 30 Stunden                   |
| Independent study         | 120 Stunden                  |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

The course addresses high-performance approaches for the particle-based simulation of fluids, elastic solids, rigid bodies and their interactions. The course introduces relevant concepts with a strong focus on high-performance implementations. The introduced concepts are used in interactive games and in the enter-tainment industry in general, but also for large-scale simulations in engineering.

Topics:

- 1. Equations for the motion of particle-based fluids, elastic solids and rigid bodies.
- 2. Time derivatives to compute particle motion.
- 3. Spatial derivatives with SPH to compute particle forces.
- 4. Efficient matrix-free implementations of linear solvers for robust implicit formulations.
- 5. Spatial data structures for accelerated fluid-rigid and rigid-rigid interactions.
- 6. Efficient implementations of spatial data structures with hashing and sorting.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

### Literature

 Koschier et al: Smoothed Particle Hydrodynamics Techniques for the Physics Based Simulation of Fluids and Solids.

- Ihmsen et al: SPH Fluids in Computer Graphics.
- Bridson: Fluid Simulation for Computer Graphics.
- Ericson: Real-time Collision Detection.

# Compulsory requirement

keine | none

Recommended requirement

Programming Skills (C, C++, Java)

Knowledge in Algorithms and Data Structures, Linear Algebra and Analysis

## Teaching method

Lectures, discussions, theoretical and practical exercises.

| Name of module                                                              | Number of module      |  |  |
|-----------------------------------------------------------------------------|-----------------------|--|--|
| Simulation in Computer Graphics                                             | 11LE13MO-1113_PO 2020 |  |  |
| course                                                                      |                       |  |  |
| Simulation in Computergraphik / Simulation in Computer Graphics - Exercises |                       |  |  |
| Event type                                                                  | Number                |  |  |
| excercise course                                                            | 11LE13Ü-1113          |  |  |
| Organizer                                                                   |                       |  |  |
| Department of Computer Science, Computer Graphics                           |                       |  |  |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 30 Stunden                   |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

| Contents                                                                                             |
|------------------------------------------------------------------------------------------------------|
| In the exercises, students will learn to apply the methods from the lectures in a practical setting. |
| Examination achievement                                                                              |
| Siehe Modulebene  <br>See module level                                                               |
| Course achievement                                                                                   |
| Siehe Modulebene  <br>See module level                                                               |
| Compulsory requirement                                                                               |
|                                                                                                      |

 $\uparrow$ 

| Name of module                                                         | Number of module      |
|------------------------------------------------------------------------|-----------------------|
| Soft Robotics                                                          | 11LE13MO-5374_PO 2020 |
| Responsible                                                            |                       |
| JProf. Dr. Edoardo Milana                                              |                       |
| Organizer                                                              |                       |
| Department of Microsystems Engineering, Professorship in Soft Machines |                       |
| Faculty                                                                |                       |
| Faculty of Engineering                                                 |                       |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden/hours            |
| Hours of week             | 4.0                          |
| Recommended semester      | 3                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each winter term |

| Compulsory requirement  |
|-------------------------|
| none                    |
| Recommended requirement |
| none                    |

| Assigned Courses        |                                                                                          |                    |      |     |           |
|-------------------------|------------------------------------------------------------------------------------------|--------------------|------|-----|-----------|
| Name                    | Туре                                                                                     | C/E                | ECTS | HoW | Workload  |
| Soft Robotics           | lecture course                                                                           | Core elec-<br>tive | 6.0  | 2.0 | 180 hours |
| Soft Robotics - Projekt | Alle Arten, soweit<br>keine ständige<br>Betreuung der Studie-<br>renden erforderlich ist |                    |      | 2.0 |           |

# Qualification

The objective of this course it to provide students of engineering with the basics of Soft Robotics. Thus, the following topics will be addressed:

- design and modeling of soft robots
- soft actuation principles
- materials and fabrication processes
- control of soft robots
- multifunctional embodiement

Examination achievement

oral examination oral presentation

The final grade will be a weighted average of the project presentation (30%) and oral exam (70%)

## Course achievement

none

### Usability

Compulsory elective module for students of the study program

- M.Sc. Microsystems Engineering (PO 2021), Concentration Materials and Fabrication
- M.Sc. Mikrosystemtechnik (PO 2021), Vertiefung Materialien und Herstellungsprozesse
- M.Sc. Embedded Systems Engineering (PO 2021), in Microsystems Engineering Concentrations Area: Materials and Fabrication
- M.Sc. Informatik / Computer Science (PO 2020), in Spezialvorlesung | Specialization Courses

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- Master of Science in Sustainable Systems Engineering
  - Interdisciplinary Profile
- ↑
| Name of module | Number of module      |
|----------------|-----------------------|
| Soft Robotics  | 11LE13MO-5374_PO 2020 |
| course         |                       |
| Soft Robotics  |                       |
| Event type     | Number                |
| lecture course | 11LE50V-5374          |
| Organizer      |                       |

Department of Microsystems Engineering, Professorship in Soft Machines

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 hours                    |
| Hours of week             | 2.0                          |
| Recommended semester      | 3                            |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

## Contents

The students will learn how to design, fabricate and control robots made of soft and deformable materials. Models of soft manipulators based on beam theory and piecewise constant strain approximation will be introduced. We will study the main soft actuation mechanisms, such as inflatable actuators, electroactive polymers, magnetorheological elastomers, liquid crystal elastomers. Different manufacturing techniques will be analysed, in the context of polymer molding and additive manufacturing. Further, we will see some examples of model-based control for soft robots. Finally, the concept of multifunctional embodiement of sensing, actuation, control and energy will be discussed.

Examination achievement

See module level

Course achievement

See module level

Literature

Della Santina, Cosimo, et al. "Soft robots." Encyclopedia of Robotics 489 (2020).

Rus, Daniela, and Michael T. Tolley. "Design, fabrication and control of soft robots." Nature 521.7553 (2015): 467-475.

Gorissen, Benjamin, et al. "Elastic inflatable actuators for soft robotic applications." Advanced Materials 29.43 (2017): 1604977. Suzumori et al "The Science of Soft Robots: Design, Materials and Information Processing", Springer (2023)

#### Compulsory requirement

None

Recommended requirement

Continuum Mechanics (Solid and Fluid), Electromagnetism, Thermodynamics

|                                                                               | 1                     |
|-------------------------------------------------------------------------------|-----------------------|
| Name of module                                                                | Number of module      |
| Soft Robotics                                                                 | 11LE13MO-5374_PO 2020 |
| course                                                                        | •<br>•                |
| Soft Robotics - Projekt                                                       |                       |
| Event type                                                                    | Number                |
| Alle Arten, soweit keine ständige Betreuung der Studierenden erforderlich ist | 11LE50P-5374          |
| Organizer                                                                     |                       |
| Department of Microsystems Engineering, Professorship in Soft Machines        |                       |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Hours of week             | 2.0                          |
| Recommended semester      | 3                            |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

During the course there will be a project assignment, where the students will be divided in groups and will be given a design challenge for a soft robotic system with specific requirements in terms of operational environment and locomotion modes.

Examination achievement

See module level

Course achievement

See module level

↑

Compulsory requirement

| Name of module                                                           | Number of module      |  |
|--------------------------------------------------------------------------|-----------------------|--|
| Statistical Pattern Recognition                                          | 11LE13MO-1114_PO 2020 |  |
| Responsible                                                              | - :                   |  |
| Prof. Dr. Thomas Brox                                                    |                       |  |
| Organizer                                                                |                       |  |
| Department of Computer Science, Pattern Recognition and Image Processing |                       |  |
| Faculty                                                                  |                       |  |
| Faculty of Engineering                                                   |                       |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Recommended semester      | 1                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

| Compulsory requirement                                     |
|------------------------------------------------------------|
| keine   none                                               |
| Recommended requirement                                    |
| Fundamental mathematical knowledge, particularly statistic |

| Assigned Courses                                                              |                  |                    |      |     |                             |
|-------------------------------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                                          | Туре             | C/E                | ECTS | HoW | Workload                    |
| Statistische Mustererkennung / Statistical<br>Pattern Recognition - Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Statistische Mustererkennung / Statistical<br>Pattern Recognition - Exercises | excercise course | Core elec-<br>tive |      | 2.0 |                             |

# Qualification

Students know the most relevant techniques of pattern recognition. They are able to understand current related literature and can apply appropriate techniques to solve pattern recognition problems in different areas of application.

# Examination achievement

Klausur (i.d.R. 90 bis 180 Minuten) | Written exam (usually 90 to 180 minutes)

#### Course achievement

keine | none

# Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)
- ↑

| Name of module                                                            | Number of module      |  |
|---------------------------------------------------------------------------|-----------------------|--|
| Statistical Pattern Recognition                                           | 11LE13MO-1114_PO 2020 |  |
| course                                                                    |                       |  |
| Statistische Mustererkennung / Statistical Pattern Recognition - Lecture  |                       |  |
| Event type                                                                | Number                |  |
| lecture course                                                            | 11LE13V-1114          |  |
| Organizer                                                                 |                       |  |
| Department of Computer Science, Dettern Descentition and Image Processing |                       |  |

Department of Computer Science, Pattern Recognition and Image Processing

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 28 Stunden                   |
| Independent study         | 126 Stunden                  |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

The course introduces the basic ideas of recognition and learning, and reviews the most important terminology of probabilistic methods. Afterwards the most common techniques for classification, regression, and clustering are presented, among them linear regression, Gaussian processes, logistic regression, support vector machines, non-parametric density estimation, and expectation-maximization. Additionally, the course includes dimensionality reduction methods and inference in graphical models. Programming assignments in Matlab or Python help deepen the understanding of the material.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

#### Literature

"Pattern Recognition and Machine Learning" by Christopher Bishop

#### Compulsory requirement

keine | none

Recommended requirement

Fundamental mathematical knowledge, particularly statistic

# Recommendation

Usually the course is offered every summer semester; as there might be rare exceptions in some years, it's marked as "irregularly"

| Name of module                                                             | Number of module      |  |
|----------------------------------------------------------------------------|-----------------------|--|
| Statistical Pattern Recognition                                            | 11LE13MO-1114_PO 2020 |  |
| course                                                                     |                       |  |
| Statistische Mustererkennung / Statistical Pattern Recognition - Exercises |                       |  |
| Event type                                                                 | Number                |  |
| excercise course 11LE13Ü-1114                                              |                       |  |
| Organizer                                                                  |                       |  |

Department of Computer Science, Pattern Recognition and Image Processing

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 26 Stunden                   |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

The exercises consist of theoretical assignments and programming assignments, to apply the methods and concepts from the lecture.

Examination achievement

Siehe Modulebene | See module level

#### Course achievement

Siehe Modulebene | See module level

Compulsory requirement

| Name of module                                        | Number of module      |
|-------------------------------------------------------|-----------------------|
| Test und Zuverlässigkeit / Test and Reliability       | 11LE13MO-1202_PO 2020 |
| Responsible                                           |                       |
| Prof. Dr. Armin Biere                                 |                       |
| Organizer                                             |                       |
| Department of Computer Science, Computer Architecture |                       |
| Faculty                                               |                       |
| Faculty of Engineering                                |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 1                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

# Compulsory requirement

keine | none

Recommended requirement

Kenntnisse in Technische Informatik und Rechnerarchitektur / Computer Architecture |

Knowledge of technical informatics and computer architecture

| Assigned Courses                                                 |                  |                    |      |     |                             |
|------------------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                             | Туре             | C/E                | ECTS | HoW | Workload                    |
| Test und Zuverlässigkeit / Test and Reliabi-<br>lity - Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 Stun-<br>den  <br>hours |
| Test und Zuverlässigkeit / Test and Reliabi-<br>lity - Exercises | excercise course | Core elec-<br>tive |      | 1.0 |                             |

# Qualification

The students know the basic questions of testing digital circuits and, based on this, know, apply and, if necessary, adapt important algorithmic techniques to new needs. Students are able to carry out "Design for Testability" and assess the advantages and disadvantages of these measures. They are familiar with the challenges of the new technologies and they can assess state-of-the-art approaches.

## Examination achievement

Klausur (i.d.R. 90 bis 180 Minuten) | Written exam (usually 90 to 180 minutes)

(Wenn die Teilnehmerzahl sehr klein ist, kann stattdessen eine mündliche Prüfung durchgeführt werden. Die Studierenden werden rechtzeitig informiert. |

If number of participants is small, might be changed to oral exam instead. Students will be notified in good time.)

Course achievement

keine | none

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

M.Ed. Informatik (PO 2018)

Master of Education Erweiterungsfach Informatik (PO 2021)

| Name of module                                            | Number of module      |  |  |
|-----------------------------------------------------------|-----------------------|--|--|
| Test und Zuverlässigkeit / Test and Reliability           | 11LE13MO-1202_PO 2020 |  |  |
| course                                                    |                       |  |  |
| Test und Zuverlässigkeit / Test and Reliability - Lecture |                       |  |  |
| Event type                                                | Number                |  |  |
| lecture course                                            | 11LE13V-1202          |  |  |
| Organizer                                                 |                       |  |  |
| Department of Computer Science, Computer Architecture     |                       |  |  |

Department of Computer Science, Computer Architecture

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Attendance                | 45 Stunden                   |
| Independent study         | 120 Stunden                  |
| Hours of week             | 3.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

The manufacturing process of integrated circuits (ICs, chips) is a yield process, i.e. some of the ICs will be inherently prone to failures. Since shipping of defective chips implies high follow-up costs, a test phase is necessary to detect defective chips as early as possible. Today, the so-called structural test flow is widely accepted. Here, defects are abstracted with the help of fault models and test patterns are generated that guarantee a high fault coverage with respect to the fault model considered. Taken together, test costs are responsible for up to 40% of the IC's production costs. Furthermore, it is widely accepted that already during the design phase testability has to be taken into account (design for testability, DFT). Because of this, at least a basic knowledge of IC test issues is of importance also for IC designers.

Consequently, the course starts with standard test topics like fault models, (stuck-at)-fault simulation and automatic test pattern generation (ATPG). We will also provide an introduction to DFT methods, in particular scan design and built-in self-test. Finally, current research topics such as defect based testing, non-standard fault models, test for systems-on-a-chip (SOCs), variation aware testing, robustness analysis are addressed.

# Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

#### Literature

 Abramovici, Breuer, Friedman, "Digital Systems Testing & Testable Design", IEEE Press, 1994, ISBN: 0780310624 (available in our library).

Jha, Gupta, "Testing of Digital Systems", Cambridge University Press, 2003, ISBN 05217 73563 (available in our library).

## Compulsory requirement

keine | none

↑

Recommended requirement

Kenntnisse in Technische Informatik und Rechnerarchitektur / Computer Architecture |

Knowledge of technical informatics and computer architecture

| Name of module                                              | Number of module      |
|-------------------------------------------------------------|-----------------------|
| Test und Zuverlässigkeit / Test and Reliability             | 11LE13MO-1202_PO 2020 |
| course                                                      |                       |
| Test und Zuverlässigkeit / Test and Reliability - Exercises |                       |
| Event type                                                  | Number                |
| excercise course                                            | 11LE13Ü-1202          |
| Organizer                                                   |                       |
| Department of Computer Science, Computer Architecture       |                       |

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 15 Stunden                   |
| Hours of week             | 1.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each winter term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

| ontents                             |  |
|-------------------------------------|--|
|                                     |  |
| xamination achievement              |  |
| ehe Modulebene  <br>ee module level |  |
| ourse achievement                   |  |
| ehe Modulebene  <br>ee module level |  |
| ompulsory requirement               |  |
|                                     |  |

 $\uparrow$ 

| Name of module                                                                                             | Number of module      |
|------------------------------------------------------------------------------------------------------------|-----------------------|
| Verifikation Digitaler Schaltungen / Verification of Digital Circuits                                      | 11LE13MO-1223_PO 2020 |
| Responsible                                                                                                | ·                     |
| Prof. Dr. Christoph Scholl                                                                                 |                       |
| Organizer                                                                                                  |                       |
| Department of Computer Science, Computer Architecture<br>Department of Computer Science, Operating Systems |                       |
| Faculty                                                                                                    |                       |
| Faculty of Engineering                                                                                     |                       |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 3                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement                                 |
|--------------------------------------------------------|
| keine   none                                           |
| Recommended requirement                                |
| Requires basic knowledge in Technical Computer Science |

| Assigned Courses                                                                       |                  |                    |      |     |                  |
|----------------------------------------------------------------------------------------|------------------|--------------------|------|-----|------------------|
| Name                                                                                   | Туре             | C/E                | ECTS | HoW | Workload         |
| Verifikation Digitaler Schaltungen / Verifica-<br>tion of Digital Circuits - Lecture   | lecture course   | Core elec-<br>tive |      | 3.0 | 180 Stun-<br>den |
| Verifikation Digitaler Schaltungen / Verifica-<br>tion of Digital Circuits - Exercises | excercise course | Core elec-<br>tive |      | 1.0 |                  |

# Qualification

Students know about formal methods used in semi conductor industries to systematically search for faults and, optimally, prove their absence.

Students know data structures and can apply methods that form the basis for formal verification of digital circuits, like binary decision diagrams, SAT solvers, And-Inverter-Graphs. Based on these methods, students will be able to analyze and use symbolic methods for equivalence checks and automatic model checking for digital circuits.

## Examination achievement

Klausur (i.d.R. 90 bis 180 Minuten) | Written exam (usually 90 to 180 minutes)

(Wenn die Teilnehmerzahl sehr klein ist, kann stattdessen eine mündliche Prüfung durchgeführt werden. Die Studierenden werden rechtzeitig informiert. |

If number of participants is small, might be changed to oral exam instead. Students will be notified in good time.)

Course achievement

keine | none

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)
- ↑

| Name of module                                                                                             | Number of module      |  |
|------------------------------------------------------------------------------------------------------------|-----------------------|--|
| Verifikation Digitaler Schaltungen / Verification of Digital Circuits                                      | 11LE13MO-1223_PO 2020 |  |
| course                                                                                                     |                       |  |
| Verifikation Digitaler Schaltungen / Verification of Digital Circuits - Lecture                            |                       |  |
| Event type                                                                                                 | Number                |  |
| lecture course                                                                                             | 11LE13V-1223          |  |
| Organizer                                                                                                  |                       |  |
| Department of Computer Science, Computer Architecture<br>Department of Computer Science, Operating Systems |                       |  |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden                     |
| Hours of week             | 3.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

## Contents

Viele moderne Produkte basieren auf mikroelektronischen Komponenten. Oftmals ist das korrekte Funktionieren dieser Produkte lebenswichtig, etwa in Medizintechnik oder Autoelektronik. Daher werden hohe Anforderungen an die Qualität der darin eingesetzten mikroelektronischen Systeme gestellt. Die Anforderungen lassen sich in drei Gruppen unterteilen: (1) Das System muss korrekt entsprechend der Spezifikation entworfen sein. (2) Das gemäß Entwurf physikalisch gefertigte System soll zum Zeitpunkt seiner Herstellung fehlerfrei funktionieren. (3) Darüber hinaus soll das System für einen gegebenen Zeitraum zuverlässig (d.h. ohne Ausfall) eingesetzt werden können.

Während Anforderung (2) durch Testmethoden und Anforderung (3) durch Methoden zur Erhöhung der Ausfallsicherheit behandelt werden, spielen für die Einhaltung von Anforderung (1) Verifikations- und Validierungsmethoden eine Rolle. Der Schwerpunkt der Vorlesung liegt auf Verifikations- und Validierungsmethoden für digitale Komponenten. Dabei interessiert sowohl der formale Nachweis von Systemeigenschaften als auch die Übereinstimmung des Entwurfs im Vergleich zu einer gegebenen Spezifikation. Es werden zunächst verschiedene existierende Basistechniken zur formalen Verifikation vorgestellt, wie z.B. Decision Diagrams, SAT-Solver und And-Inverter-Graphen. Darauf aufsetzend werden auf symbolischen Methoden beruhende Ansätze zum Äquivalenzvergleich kombinatorischer und sequentieller Schaltungen sowie zur Eigenschaftsprüfung beschrieben

## Examination achievement

Siehe Modulebene | See module level

See module level

# Course achievement

Siehe Modulebene | See module level

#### Literature

- Kropf: "Introduction to Formal Hardware Verification", Springer, 1999, ISBN 3-540-65445-3
- Clarke, Grumberg, Peled, "Model Checking", MIT Press 1999
- Kropf (Ed.): "Formal Hardware Verification", Springer, 1997, ISBN 3-540-63475-4

- Diverse Originalarbeiten
- Presentation of powerpoint slides. Slides and exercise sheets can be downloaded from the course website.

Compulsory requirement

**Recommended requirement** 

Basiswissen in Technische Informatik

| Name of module                                                                                             | Number of module      |  |
|------------------------------------------------------------------------------------------------------------|-----------------------|--|
| Verifikation Digitaler Schaltungen / Verification of Digital Circuits                                      | 11LE13MO-1223_PO 2020 |  |
| course                                                                                                     |                       |  |
| Verifikation Digitaler Schaltungen / Verification of Digital Circuits - Exercises                          |                       |  |
| Event type                                                                                                 | Number                |  |
| excercise course                                                                                           | 11LE13Ü-1223          |  |
| Organizer                                                                                                  |                       |  |
| Department of Computer Science, Computer Architecture<br>Department of Computer Science, Operating Systems |                       |  |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 16 Stunden                      |
| Hours of week             | 1.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

| Contents                               |
|----------------------------------------|
|                                        |
| Examination achievement                |
| Siehe Modulebene  <br>See module level |
| Course achievement                     |
| Siehe Modulebene  <br>See module level |
| Compulsory requirement                 |
|                                        |
| $\uparrow$                             |

Edition: 10. April 2025 EXA 830 (09/2024) MODULE DESCRIPTION

| Name of module                                            | Number of module      |  |
|-----------------------------------------------------------|-----------------------|--|
| Verteilte Systeme / Distributed Systems                   | 11LE13MO-1312_PO 2020 |  |
| Responsible                                               |                       |  |
| Prof. Dr. Fabian Kuhn                                     |                       |  |
| Organizer                                                 |                       |  |
| Department of Computer Science, Algorithms and Complexity |                       |  |
| Faculty                                                   |                       |  |
| Faculty of Engineering                                    |                       |  |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Hours of week             | 4.0                             |
| Recommended semester      | 1                               |
| Duration                  | 1 Semester                      |
| Compulsory/Elective (C/E) | Core elective                   |
| Frequency                 | takes place once or irregularly |

| Compulsory requirement                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| keine   none                                                                                                                                |
| Recommended requirement                                                                                                                     |
| Basic knowledge in algorithm design & analysis, some mathematical maturity (in particular, we use some graph theory and probability theory) |

Knowledge about databases and information systems

| Assigned Courses                                       |                  |                    |      |     |                             |
|--------------------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                                   | Туре             | C/E                | ECTS | HoW | Workload                    |
| Verteilte Systeme / Distributed Systems -<br>Lecture   | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den  <br>hours |
| Verteilte Systeme / Distributed Systems -<br>Exercises | excercise course | Core elec-<br>tive |      | 2.0 |                             |

# Qualification

The students know the specific problems in distributed systems that arise from the interaction of concurrent processes. They know and apply solutions to such problems.

## Examination achievement

mündliche Prüfung (i.d.R. 30 oder 45 Minuten) | Oral exam (usually 30 or 45 minutes)

(Wenn die Teilnehmerzahl sehr groß ist, kann stattdessen eine schriftliche Prüfung (i.d.R. 90 bis 180 Minuten) durchgeführt werden. Die Studierenden werden rechtzeitig informiert.

If number of participants is very high, might be exceptionally changed to written examination (usually 90 to 180 minutes) instead. Students will be notified in good time.)

Course achievement

keine | none

## Recommendation

Please note: The exercises are an integral part of the lecture, the topics covered by the exercises will also be part of the exam.

#### Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. MSc Embedded Systems Engineering

Wahlpflichtmodul für Studierende des Studiengangs

- B.Sc. in Embedded Systems Engineering (PO 2018) im Bereich Informatik
- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Ed. Informatik (PO 2018)
- Master of Education Erweiterungsfach Informatik (PO 2021)

ſ

| Name of module                                            | Number of module      |  |
|-----------------------------------------------------------|-----------------------|--|
| Verteilte Systeme / Distributed Systems                   | 11LE13MO-1312_PO 2020 |  |
| course                                                    |                       |  |
| Verteilte Systeme / Distributed Systems - Lecture         |                       |  |
| Event type                                                | Number                |  |
| lecture course                                            | 11LE13V-1312          |  |
| Organizer                                                 |                       |  |
| Department of Computer Science, Algorithms and Complexity |                       |  |

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Attendance                | 26 Stunden                      |
| Independent study         | 128 Stunden                     |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

# Contents

The course provides an introduction to the fundamentals of distributed systems and algorithms. The course will in particular cover the following topics:

- distributed systems models
- time and global states in distributed systems
- sychronous and asynchronous systems
- fault tolerance
- basic distributed algorithms for coordination and agreement tasks
- basic distributed network algorithms
- distributed and parallel graph algorithms
- impossibility results and lower bounds

#### Examination achievement

Siehe Modulebene | See module level

#### Course achievement

Siehe Modulebene | See module level

#### Literature

Some of the content is for example covered by the following books:

Distributed Computing: Fundamentals, Simulations and Advanced Topics Hagit Attiya, Jennifer Welch. McGraw-Hill Publishing, 1998, ISBN 0-07-709352 6

Distributed Computing: A Locality-Sensitive Approach David Peleg. Society for Industrial and Applied Mathematics (SIAM), 2000, ISBN 0-89871-464-8

Additional literature will be provided in the lecture.

Compulsory requirement

keine | none

Recommended requirement

Basic knowledge in algorithm design & analysis, some mathematical maturity (in particular, we use some graph theory and probability theory)

| Name of module                                            | Number of module      |  |
|-----------------------------------------------------------|-----------------------|--|
| Verteilte Systeme / Distributed Systems                   | 11LE13MO-1312_PO 2020 |  |
| course                                                    |                       |  |
| Verteilte Systeme / Distributed Systems - Exercises       |                       |  |
| Event type                                                | Number                |  |
| excercise course                                          | 11LE13Ü-1312          |  |
| Organizer                                                 |                       |  |
| Department of Computer Science, Algerithms and Complexity |                       |  |

Department of Computer Science, Algorithms and Complexity

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Attendance                | 26 Stunden                      |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

# Contents

The lecture will be complemented by theoretical exercises that allow to apply and further develop ideas and techniques discussed in the lecture. The exercises are an integral part of the lecture, the topics covered by the exercises will also be part of the oral exam.

Examination achievement

Siehe Modulebene | See module level

#### Course achievement

Siehe Modulebene | See module level

## Compulsory requirement

| Name of module Number of mod                                 |                      |  |
|--------------------------------------------------------------|----------------------|--|
| Wearable and Implantable Computing (WIC)                     | 11E13MO-1402_PO 2020 |  |
| Responsible                                                  |                      |  |
| Prof. Dr. Oliver Amft                                        |                      |  |
| Organizer                                                    |                      |  |
| Department of Computer Science, Professorship in Intelligent | Embedded Systems     |  |
| Faculty                                                      |                      |  |
| Faculty of Engineering                                       |                      |  |

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden   hours          |
| Hours of week             | 4.0                          |
| Attendance                | 32 Stunden / Hours           |
| Independent study         | 116 Stunden / Hours          |
| Recommended semester      | 2                            |
| Duration                  | 1 Semester                   |
| Compulsory/Elective (C/E) | Core elective                |
| Frequency                 | takes place each summer term |

| Compulsory requirement                                                        |
|-------------------------------------------------------------------------------|
| keine   none                                                                  |
| Recommended requirement                                                       |
| Basic timeseries analysis methods, basic programming skills, coding in Python |

| Assigned Courses                         |                  | -                  |      |     |                             |
|------------------------------------------|------------------|--------------------|------|-----|-----------------------------|
| Name                                     | Туре             | C/E                | ECTS | HoW | Workload                    |
| Wearable and Implantable Computing (WIC) | lecture course   | Core elec-<br>tive | 6.0  | 2.0 | 180 Stun-<br>den /<br>Hours |
| Wearable and Implantable Computing (WIC) | excercise course | Core elec-<br>tive |      | 2.0 |                             |

# Qualification

Students are able to

- Understand design concepts and apply/analyse wearable and implantable system design methods.
- Analyse physical principles, select and optimise on-body energy harvesting and power management techniques.
- Create context recognition and energy-efficient pattern analysis pipelines using sparse sampling and pattern processing methods.
- Build wearable system prototypes and apply system evaluation methods, including design for biocompatibility.

Examination achievement

mündliche Prüfung (i.d.R. 30 oder 45 Minuten) | Oral exam (usually 30 or 45 minutes)

If there are too many students for a reasonably organized oral exam, it will be held as a written exam instead, announced well in advance.

Course achievement

Durchführung von Versuchen und Ergebnisprotokoll

Execution of experiments and written report of results

Usability

Compulsory elective module for students of the study program

- M.Sc. Informatik / Computer Science (2020) in Spezialvorlesung | Specialization Courses
- M.Sc. Embedded Systems Engineering (ESE) (2021) in Elective Courses in Computer Science OR in Microsystems Engineering Concentrations Area Circuits and Systems/Biomedical Engineering
- M.Sc. Microsystems Engineering (PO 2021), Concentration Circuits and Systems/Biomedical Engineering
- M.Sc.Mikrosystemtechnik (PO 2021), Vertiefung Schaltungen und Systeme/Biomedizinische Technik

Part of the specialization Artificial Intelligence (AI) in Master of Science Informatik/Computer Science resp. M.Sc. Embedded Systems Engineering

## and

Part of the specialization Cyber-Physical Systems (CPS) in Master of Science Informatik/Computer Science resp. M.Sc. Embedded Systems Engineering

| Name of module Number of module          |                      |
|------------------------------------------|----------------------|
| Wearable and Implantable Computing (WIC) | 11E13MO-1402_PO 2020 |
| course                                   |                      |
| Wearable and Implantable Computing (WIC) |                      |
| Event type                               | Number               |
| lecture course                           | 11E13V-1402_PO 2020  |
| Organizer                                |                      |

Department of Computer Science, Professorship in Intelligent Embedded Systems

| ECTS-Points               | 6.0                          |
|---------------------------|------------------------------|
| Workload                  | 180 Stunden / Hours          |
| Attendance                | 32 Stunden / Hours           |
| Independent study         | 116 Stunden / Hours          |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

The course provides students with a comprehensive overview and in-depth skills on system design of sensor-based wearable and implantable computing systems. Course covers frequent sensors and actuators and their system integration, context recognition methods and selected algorithms, powering and energy management concepts (task scheduling, sparse sampling, and on-demand signal processing), energy harvesting methods, and system design topics (flexible electronics, electronics textile integration, multiprocess additive manufacturing), as well as principles of system validation.

Examination achievement

see module details

Course achievement

see module details

Literature

Up-to-date literature recommendations are provided during the lectures.

Compulsory requirement

None

Recommended requirement

Basic timeseries analysis methods, basic programming skills, coding in Python

| Name of module                           | Number of module     |
|------------------------------------------|----------------------|
| Wearable and Implantable Computing (WIC) | 11E13MO-1402_PO 2020 |
| course                                   |                      |
| Wearable and Implantable Computing (WIC) |                      |
| Event type                               | Number               |
| excercise course                         | 11E13Ü-1402_PO 2020  |
| Organizer                                |                      |

Department of Computer Science, Professorship in Intelligent Embedded Systems

| ECTS-Points               |                              |
|---------------------------|------------------------------|
| Attendance                | 32 Stunden / Hours           |
| Hours of week             | 2.0                          |
| Recommended semester      |                              |
| Frequency                 | takes place each summer term |
| Compulsory/Elective (C/E) | Core elective                |
| Language                  | english                      |

# Contents

Student groups will investigate concrete cases including context recognition, energy-efficient signal processing, and digital design of wearable systems. A wearable device prototype will be realised per student group.

**Examination achievement** 

see module details

Course achievement

see module details

Compulsory requirement

| Name of module Number of mod                                             |                       |  |
|--------------------------------------------------------------------------|-----------------------|--|
| Windenergiesysteme / Wind Energy Systems                                 | 11LE50MO-5256_PO 2020 |  |
| Responsible                                                              |                       |  |
| Prof. Dr. Moritz Diehl                                                   |                       |  |
| Organizer                                                                |                       |  |
| Department of Microsystems Engineering, Systems Control and Optimization |                       |  |
| Faculty                                                                  |                       |  |
| Faculty of Engineering                                                   |                       |  |

| ECTS-Points               | 6.0           |
|---------------------------|---------------|
| Workload                  | 180 hours     |
| Hours of week             |               |
| Recommended semester      | 3             |
| Duration                  | 1 Semester    |
| Compulsory/Elective (C/E) | Core elective |

| Compulsory requirement                                                             |
|------------------------------------------------------------------------------------|
| None                                                                               |
| Recommended requirement                                                            |
| Undergraduate knowledge in physics, mathematics as well as in systems and control. |

| Assigned Courses                              |                  |                    |      |     |           |
|-----------------------------------------------|------------------|--------------------|------|-----|-----------|
| Name                                          | Туре             | C/E                | ECTS | HoW | Workload  |
| Windenergiesysteme / Wind Energy Sy-<br>stems | lecture course   | Core elec-<br>tive | 6.0  | 3.0 | 180 hours |
| Windenergiesysteme / Wind Energy Sy-<br>stems | excercise course | Core elec-<br>tive |      | 1.0 | -         |

| Qualification                                                                                                |
|--------------------------------------------------------------------------------------------------------------|
| Students understand the physical principles of wind energy and the technology of modern wind energy systems. |
| Examination achievement                                                                                      |
| Written exam (180 minutes)                                                                                   |
| Course achievement                                                                                           |
| none                                                                                                         |

# Usability

Compulsory elective module for students of the study program

- M.Sc. Microsystems Engineering (PO 2021), Concentration Circuits and Systems
- M.Sc.Mikrosystemtechnik (PO 2021), Vertiefung Schaltungen und Systeme
- M.Sc. Embedded Systems Engineering (PO 2021), in Microsystems Engineering Concentration Area Circuits and Systems
- M.Sc. Informatik / Computer Science (PO 2020), in Spezialvorlesung | Specialization Courses

# Important note for M.Sc. Informatik / Computer Science:

This module is available as both

- a specialization lecture in Computer Science (with a graded assessment / Prüfungsleistung)
- as a course in the application area Applied Bioinformatics (as pass/fail course / Studienleistung) (see according module in online module handbook / planner of studies)

Take care during the booking process, as that will define the category in which the course is considered. **You can't change the category afterwards!** So, you can't change it from PL to SL or vice versa.

| Name of module                           | Number of module      |  |
|------------------------------------------|-----------------------|--|
| Windenergiesysteme / Wind Energy Systems | 11LE50MO-5256_PO 2020 |  |
| course                                   |                       |  |
| Windenergiesysteme / Wind Energy Systems |                       |  |
| Event type                               | Number                |  |
| lecture course                           | 11LE50V-5256          |  |
| Organizer                                |                       |  |

Department of Microsystems Engineering, Systems Control and Optimization

| ECTS-Points               | 6.0                             |
|---------------------------|---------------------------------|
| Workload                  | 180 hours                       |
| Attendance                | 52 hours                        |
| Independent study         | 128 hours                       |
| Hours of week             | 3.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | english                         |

# Contents

Global wind energy resource - aerodynamic principles of wind turbines - design of modern wind turbines - control of modern wind turbines - the electrical system of wind turbines - alternative concepts and highaltitude wind energy.

Examination achievement

See module level

Course achievement

See module level

Literature

"Wind Energy Handbook" by T. Burton, N. Jenkins, D. Sharpe, E. Bossanyi, 2nd edition, Wiley, 2011

Compulsory requirement

**Recommended requirement** 

Undergraduate knowledge in physics, mathematics as well as in systems and control.

| Name of module                           | Number of module      |  |
|------------------------------------------|-----------------------|--|
| Windenergiesysteme / Wind Energy Systems | 11LE50MO-5256_PO 2020 |  |
| course                                   |                       |  |
| Windenergiesysteme / Wind Energy Systems |                       |  |
| Event type                               | Number                |  |
| excercise course                         | 11LE50Ü-5256          |  |
| Organizer                                |                       |  |

Department of Microsystems Engineering, Systems Control and Optimization

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Workload                  | -                               |
| Attendance                | -                               |
| Independent study         | -                               |
| Hours of week             | 1.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Language                  | german                          |

| Contents                                                               |  |
|------------------------------------------------------------------------|--|
| The tutorials deepen the understanding of the material of the lecture. |  |
| Examination achievement                                                |  |
| See module level                                                       |  |
| Course achievement                                                     |  |
| See module level                                                       |  |
| Compulsory requirement                                                 |  |
| None                                                                   |  |

 $\uparrow$ 

| Name of node           | Number of node    |
|------------------------|-------------------|
| Seminars               | 11LE13KT-Seminare |
| Faculty                |                   |
| Faculty of Engineering |                   |

| Compulsory/Elective (C/E) | Compulsory |
|---------------------------|------------|
| ECTS-Points               | 6.0        |

| Comment                           |
|-----------------------------------|
| Students have to take 2 Seminars. |

 $\uparrow$ 

| Name of module         | Number of module   |
|------------------------|--------------------|
| Seminar 1              | 11LE13MO-Seminar 1 |
| Responsible            |                    |
| Prof. Dr. Hannah Bast  |                    |
| Faculty                |                    |
| Faculty of Engineering |                    |

| ECTS-Points               | 3.0                |
|---------------------------|--------------------|
| Workload                  | 90 Stunden   hours |
| Hours of week             | 2.0                |
| Recommended semester      | 1                  |
| Duration                  |                    |
| Compulsory/Elective (C/E) | Compulsory         |
| Frequency                 | each term          |

| Compulsory requirement |
|------------------------|
|------------------------|

keine | none

Recommended requirement

allgmeine mathematische Grundkenntnisse, praktische und theoretische Grundlagen der Informatik, ggf. themenspezifische Vorkenntnisse für den gewählten Themenbereich |

general mathematical knowledge, practical and theoretical foundations in Computer Science, possibly subject-specific knowledge for the chosen topics

| Assigned Courses |            |     |      |     |                            |
|------------------|------------|-----|------|-----|----------------------------|
| Name             | Туре       | C/E | ECTS | HoW | Workload                   |
| VG Seminar 1 M   | <b>U</b> ( |     |      | 2.0 | 90 Stun-<br>den  <br>hours |

# Qualification

Die Studierenden erhalten einen vertieften Einblick in das wissenschaftliche Arbeiten auf einem speziellen Fachgebiet der Informatik. Anhand ausgesuchter Themen aus den unterschiedlichen Forschungs- und Arbeitsgebiete der Professuren und Arbeitsgruppen vertiefen die Studierenden ihre Kenntnisse, wie man wissenschaftliche Texte liest, Hintergrundrecherche durchführt, wissenschaftliche Ergebnisse präsentiert und an wissenschaftlichen bzw. fachlichen Diskussionen teilnimmt.

Sie erweitern ihre Kenntnisse in den Regeln und Techniken des wissenschaftlichen Arbeitens (z.B. korrektes Zitieren), insbesondere im Hinblick auf den redlichen Umgang in der Wissenschaft; diese Kenntnisse werden für das Verfassen der Masterarbeit benötigt.

Das Anfertigen und Halten einer eigenen Präsentation im Rahmen des Seminars bereitet direkt auf die Präsentation der Masterarbeit vor.

The students get an in-depth insight into scientific work in a special field of computer science. On the basis of selected topics from the various research and work areas of the professors and work groups, the students deepen their knowledge of how to read scientific texts, carry out background research, present scientific results and take part in scientific and technical discussions.

They expand their knowledge of the rules and techniques of scientific work (e.g. correct quoting), especially regarding intellectual honesty; this knowledge is required for writing the Master thesis. Preparing and holding your own presentation as part of the seminar prepares you directly for the presentation of the Master thesis.

Examination achievement

The examination consists of the preparation and implementation of a scientific presentation.

Course achievement

As a rule, the course work consists of the following components:

- regular attendance in the seminar meetings

- preparation of 3-4 questions on seminar topics of other participants
- written summary with citation of the references

Recommendation

Informationen zum Belegverfahren für Seminare: | Information about booking procedure for seminars:

https://www.tf.uni-freiburg.de/en/studies-and-teaching/a-to-z-study-faq

#### Usability

Compulsory module for students of the study pogram

- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Sc. in Informatik / Computer Science (PO 2020)

Compulsory elective module for students of the study pogram

- Master of Education Erweiterungsfach Informatik (PO 2021)
- M.Sc. Embedded Systems Engineering (PO 2021)

ſ

| Name of module                         | Number of module   |
|----------------------------------------|--------------------|
| Seminar 1                              | 11LE13MO-Seminar 1 |
| course group                           |                    |
| VG Seminar 1 M                         |                    |
| Event type                             | Number             |
| Veranstaltung (ohne Deputatanrechnung) | 11LE13VG-Seminar   |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Workload                  | 90 Stunden   hours              |
| Attendance                | 30                              |
| Independent study         | 60                              |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Compulsory                      |
| Languages                 | german, english                 |

## Contents

Various topics (changing each semester) from the research and teaching areas of the work groups/chairs at the Department of Computer Science

Examination achievement

See module level

Course achievement

See module level

Literature

background literature provided by the lecturers

Compulsory requirement

keine | none

Recommended requirement

allgmeine mathematische Grundkenntnisse, praktische und theoretische Grundlagen der Informatik, ggf. themenspezifische Vorkenntnisse für den gewählten Themenbereich |

general mathematical knowledge, practical and theoretical foundations in Computer Science, possibly subject-specific knowledge for the chosen topics

Teaching method

Seminars can be held in a weekly fashion or as a compact course (during/at the end of lecture time)

| Name of module         | Number of module   |
|------------------------|--------------------|
| Seminar 2              | 11LE13MO-Seminar 2 |
| Responsible            |                    |
| Prof. Dr. Hannah Bast  |                    |
| Faculty                |                    |
| Faculty of Engineering |                    |

| ECTS-Points               | 3.0                |
|---------------------------|--------------------|
| Workload                  | 90 Stunden   hours |
| Hours of week             | 2.0                |
| Recommended semester      | 1                  |
| Duration                  |                    |
| Compulsory/Elective (C/E) | Compulsory         |
| Frequency                 | each term          |

keine | none

Recommended requirement

allgmeine mathematische Grundkenntnisse, praktische und theoretische Grundlagen der Informatik, ggf. themenspezifische Vorkenntnisse für den gewählten Themenbereich |

general mathematical knowledge, practical and theoretical foundations in Computer Science, possibly subject-specific knowledge for the chosen topics

| Assigned Courses |                                           |                 |      |     |                            |
|------------------|-------------------------------------------|-----------------|------|-----|----------------------------|
| Name             | Туре                                      | C/E             | ECTS | HoW | Workload                   |
| Seminar 2        | Veranstaltung (ohne<br>Deputatanrechnung) | Compul-<br>sory |      | 2.0 | 90 Stun-<br>den  <br>hours |

# Qualification

Die Studierenden erhalten einen vertieften Einblick in das wissenschaftliche Arbeiten auf einem speziellen Fachgebiet der Informatik. Anhand ausgesuchter Themen aus den unterschiedlichen Forschungs- und Arbeitsgebiete der Professuren und Arbeitsgruppen vertiefen die Studierenden ihre Kenntnisse, wie man wissenschaftliche Texte liest, Hintergrundrecherche durchführt, wissenschaftliche Ergebnisse präsentiert und an wissenschaftlichen bzw. fachlichen Diskussionen teilnimmt.

Sie erweitern ihre Kenntnisse in den Regeln und Techniken des wissenschaftlichen Arbeitens (z.B. korrektes Zitieren), insbesondere im Hinblick auf den redlichen Umgang in der Wissenschaft; diese Kenntnisse werden für das Verfassen der Masterarbeit benötigt.

Das Anfertigen und Halten einer eigenen Präsentation im Rahmen des Seminars bereitet direkt auf die Präsentation der Masterarbeit vor.

The students get an in-depth insight into scientific work in a special field of computer science. On the basis of selected topics from the various research and work areas of the professors and work groups, the students deepen their knowledge of how to read scientific texts, carry out background research, present scientific results and take part in scientific and technical discussions.

They expand their knowledge of the rules and techniques of scientific work (e.g. correct quoting), especially regarding intellectual honesty; this knowledge is required for writing the Master thesis. Preparing and holding your own presentation as part of the seminar prepares you directly for the presentation of the Master thesis.

Examination achievement

The examination consists of the preparation and implementation of a scientific presentation.

Course achievement

As a rule, the course work consists of the following components:

- regular attendance in the seminar meetings
- preparation of 3-4 questions on seminar topics of other participants
- written summary with citation of the references

Recommendation

Informationen zum Belegverfahren für Seminare: | Information about booking procedure for seminars:

https://www.tf.uni-freiburg.de/en/studies-and-teaching/a-to-z-study-faq

Usability

Compulsory module for students of the study pogram

- B.Sc. in Informatik (PO 2018)
- polyvalenter 2-Hauptfächer-Bachelor Informatik (PO 2018)
- M.Sc. in Informatik / Computer Science (PO 2020)

Compulsory elective module for students of the study pogram

- Master of Education Erweiterungsfach Informatik (PO 2021)
- M.Sc. Embedded Systems Engineering (PO 2021)
| Name of module                         | Number of module   |
|----------------------------------------|--------------------|
| Seminar 2                              | 11LE13MO-Seminar 2 |
| course group                           |                    |
| Seminar 2                              |                    |
| Event type                             | Number             |
| Veranstaltung (ohne Deputatanrechnung) | 11LE13VG-Seminar   |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Workload                  | 90 Stunden   hours              |
| Attendance                | 30                              |
| Independent study         | 60                              |
| Hours of week             | 2.0                             |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Compulsory                      |
| Languages                 | german, english                 |

### Contents

Various topics (changing each semester) from the research and teaching areas of the work groups/chairs at the Department of Computer Science

Examination achievement

See module level

Course achievement

See module level

Literature

background literature provided by the lecturers

Compulsory requirement

keine | none

Recommended requirement

allgmeine mathematische Grundkenntnisse, praktische und theoretische Grundlagen der Informatik, ggf. themenspezifische Vorkenntnisse für den gewählten Themenbereich | general mathematisch knowledge, practisch and theoretisch foundations in Computer Science, passibly sub-

general mathematical knowledge, practical and theoretical foundations in Computer Science, possibly subject-specific knowledge for the chosen topics

Teaching method

Seminars can be held in a weekly fashion or as a compact course (during/at the end of lecture time)

| Name of node           | Number of node     |
|------------------------|--------------------|
| Lab Course             | 11LE13KT-Praktikum |
| Faculty                |                    |
| Faculty of Engineering |                    |

| Compulsory/Elective (C/E) | Compulsory |
|---------------------------|------------|
| ECTS-Points               | 6.0        |

| Comment                             |
|-------------------------------------|
| Students have to take 1 lab course. |

 $\uparrow$ 

| Name of module         | Number of module      |
|------------------------|-----------------------|
| Praktikum              | 11LE13MO-7110 PO 2020 |
| Responsible            |                       |
| Prof. Dr. Hannah Bast  |                       |
| Faculty                |                       |
| Faculty of Engineering |                       |

| ECTS-Points               | 6.0                 |
|---------------------------|---------------------|
| Workload                  | 180 Stunden   hours |
| Hours of week             | 4.0                 |
| Recommended semester      | 2                   |
| Duration                  | 1 Semester          |
| Compulsory/Elective (C/E) | Compulsory          |
| Frequency                 | each term           |

| Compulsory requirement |
|------------------------|
|------------------------|

keine | none

Recommended requirement

allgmeine praktische und theoretische Grundlagen der Informatik, Programmierkenntnisse, themenspezifische Vorkenntnisse für den gewählten Themenbereich |

general practical and theoretical foundations in Computer Science, programming skills, subject-specific knowledge for the chosen topics

| Assigned Courses      |                                           |     |      |     |                             |
|-----------------------|-------------------------------------------|-----|------|-----|-----------------------------|
| Name                  | Туре                                      | C/E | ECTS | HoW | Workload                    |
| Praktikum Informatik1 | Veranstaltung (ohne<br>Deputatanrechnung) |     |      |     | 180 Stun-<br>den  <br>hours |

## Qualification

While working with other students or members of the work groups/chairs at the Department of Computer Science on one of many topics they can choose from following their field of interest, students learn to complete given tasks taking into account the given technical conditions, conduct experiments and record and analyze the results in appropriate scientific manner and report on their work.

Examination achievement

keine | none

| keine   none                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Für Studierende im M.Ed. Informatik:<br>Je nach Themenstellung:<br>- Bearbeitung der gestellten Aufgaben und Experimente<br>- Erstellen von Software oder Demonstratoren<br>- schriftlicher Bericht: Praktikumsbericht oder Protokoll oder eine (nach den wissenschaftlichen<br>Maßstäben) ausreichenden Dokumentation<br>- mündliche Präsentation (in der Regel 20 - 30 Minuten)<br>Bei mehreren Prüfungsteilen errechnet sich die Note nach dem arithmetischen Mittel der Teilnoten. |
| Course achievement                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| As a rule, the course work consists of the following components:<br>- regular attendance of the practical parts of the course as well as (team) meetings and discussions with the<br>supervisor<br>- completing assigned tasks and experiments<br>- creation of software or demonstrators<br>- written report: lab report or protocol or sufficient documentation (according to the scientific standards)<br>- oral presentation (usually 20 - 30 minutes)                             |
| Recommendation                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Language is usually English, but might be negotiable (changed to German)                                                                                                                                                                                                                                                                                                                                                                                                               |
| Usability                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Compulsory module for students of the study program<br>M.Sc. Informatik / Computer Science (2020)                                                                                                                                                                                                                                                                                                                                                                                      |
| Compulsory elective module for students of the study program<br>M.Sc. Embedded Systems Engineering (ESE) (2021) in the Customized Course Selection                                                                                                                                                                                                                                                                                                                                     |
| Wahlpflichtmodul für Studierende des Studiengangs<br>M.Ed. Informatik (PO 2018); Modul "Informatik - Vertiefung 2"                                                                                                                                                                                                                                                                                                                                                                     |
| $\uparrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| Name of module Number of module        |                  |  |
|----------------------------------------|------------------|--|
| Praktikum 11LE13MO-7110 PO 2           |                  |  |
| course group                           |                  |  |
| Praktikum Informatik1                  |                  |  |
| Event type                             | Number           |  |
| Veranstaltung (ohne Deputatanrechnung) | 11LE13VG-7110-P1 |  |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Workload                  | 180 Stunden   hours             |
| Attendance                | 60 Stunden                      |
| Independent study         | 120 Stunden                     |
| Hours of week             |                                 |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Core elective                   |
| Languages                 | german, english                 |

### Contents

Various topics from the research and teaching areas of the work groups/chairs at the Department of Computer Science

#### Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

Literature

Instructions and background literature are provided by the lecturers

Compulsory requirement

keine | none

Recommended requirement

allgmeine praktische und theoretische Grundlagen der Informatik, Programmierkenntnisse, themenspezifische Vorkenntnisse für den gewählten Themenbereich |

general practical and theoretical foundations in Computer Science, programming skills, subject-specific knowledge for the chosen topics

| Name of node                | Number of node     |
|-----------------------------|--------------------|
| Customized Course Selection | 11LE13KT-Indiv STG |
| Faculty                     |                    |
| Faculty of Engineering      |                    |

| Compulsory/Elective (C/E) | Compulsory |
|---------------------------|------------|
| ECTS-Points               | 18.0       |

## Comment

Students have to take 18 ECTS credits by doing courses outside of Computer Science.

They can substitute up to 6 of these credits by

- either doing a language course at SLI

- or taking an additional Computer Science lecture (Advanced Lecture or Specialization Course) In this case, this course counts as a graded assessment.

The other courses are pass/fail courses.

| Name of node                                    | Number of node                      |
|-------------------------------------------------|-------------------------------------|
| Advanced Lecture in Customized Course Selection | 11LE13KT-Indiv STG- WVorle-<br>sung |
| Faculty                                         |                                     |
| Faculty of Engineering                          |                                     |

| Compulsory/Elective (C/E) | Core elective |
|---------------------------|---------------|
| ECTS-Points               | 6.0           |

### Comment

↑

Im Rahmen der Individuellen Studiengestaltung kann eine weitere Informatik-Vorlesung (aus der Kategorie der Weiterführenden Vorlesungen oder der Spezialvorlesungen) gewählt werden. Diese wird auch innerhalb der Individuellen Studiengestaltung mit einer Prüfungsleistung abgeschlossen und geht mit 6 ECTS-Punkten in die Endnote ein.

## Für die entsprechenden Modulbeschreibungen wird auf die vorhergehenden Konten "Weiterführende Vorlesungen" und "Spezialvorlesungen" verwiesen.

As part of the Customized Course Selection, one additional computer science lecture (from the category of Advanced Lectures or Specialization Courses) can be selected. This lecture is completed with an examination even though it is part of the Customized Course Selection and is included in the final grade with 6 ECTS credits.

For the corresponding module descriptions, please refer to the previous accounts "Advanced Lectures" and "Specialization Courses".

| Name of node                                         | Number of node                   |
|------------------------------------------------------|----------------------------------|
| Specialization Course in Customized Course Selection | 11LE13KT-Indiv STG-Spez-<br>Vorl |
| Faculty                                              |                                  |
| Faculty of Engineering                               |                                  |

| Compulsory/Elective (C/E) | Core elective |
|---------------------------|---------------|
| ECTS-Points               | 6.0           |

### Comment

↑

Im Rahmen der Individuellen Studiengestaltung kann eine weitere Informatik-Vorlesung (aus der Kategorie der Weiterführenden Vorlesungen oder der Spezialvorlesungen) gewählt werden. Diese wird auch innerhalb der Individuellen Studiengestaltung mit einer Prüfungsleistung abgeschlossen und geht mit 6 ECTS-Punkten in die Endnote ein.

### Für die entsprechenden Modulbeschreibungen wird auf die vorhergehenden Konten "Weiterführende Vorlesungen" und "Spezialvorlesungen" verwiesen.

As part of the Customized Course Selection, one additional computer science lecture (from the category of Advanced Lectures or Specialization Courses) can be selected. This lecture is completed with an examination even though it is part of the Customized Course Selection and is included in the final grade with 6 ECTS credits.

For the corresponding module descriptions, please refer to the previous accounts "Advanced Lectures" and "Specialization Courses".

| Name of node                                           | Number of node         |
|--------------------------------------------------------|------------------------|
| Courses offered in other departments of the University | 11LE13KT-Indiv STG-FWB |
| Faculty                                                |                        |
| Faculty of Engineering                                 |                        |

Compulsory/Elective (C/E)

Compulsory

## Comment

Eine Übersicht zu den verfügbaren Veranstaltungen für Masterstudierende in Informatik / Computer Science finden Sie hier: |

An Overview of the available courses open for Master students in Informatik / Computer Science can be found here:

https://www.tf.uni-freiburg.de/bilder/studium\_lehre/studienplaene/liste-fachfremder-wahlmodule-msc-infor-matik-po-2020

Students have to take courses amounting to 18 ECTS credits (or at least 12, if doing an additional Computer Science lecture in the Customized Course Selection) from courses outside of Computer Science.

Courses from other departments of the University can only be chosen from selected subjects. These subjects are listed in the following part; only the courses listed here per subject are open to Computer Science students. Other courses from the listed subjects cannot be chosen.

| Name of node           | Number of node |
|------------------------|----------------|
| Applied Bioinformatics | 11LE13KT-FWB   |
| Faculty                |                |
| Faculty of Engineering |                |

Compulsory/Elective (C/E)

Core elective

| Comment                                             |     |
|-----------------------------------------------------|-----|
| In "Applied Bioinformtics" you can choose the follo | ••• |

- In "Applied Bioinformtics" you can choose the following courses:
- PM-01 Bioinformatics (6 ECTS, from the study program of "Biology")
- Vertiefende Methoden der Bioinformatik (9 ECTS, from the study program of "Pharmazie")
- Introduction to data driven life sciences (6 ECTS, from Computer Science) Please note: This can be taken here as a course "outside of CS" (then it is pass/fail (SL) only) or as a specialization course in CS (then it is graded (PL)); the mode is determined by booking in HISinOne in the respective area and can NOT be changed afterwards!

Please refer to the subjects for further information and module descriptions.

| Name of node             | Number of node         |
|--------------------------|------------------------|
| Kognitionswissenschaften | 11LE13KT-FWB-Kognition |
| Faculty                  |                        |
| Faculty of Engineering   |                        |

Compulsory/Elective (C/E)

Core elective

## Comment

In "Kognitionswissenschaften" (mostly in German) you can choose the following courses:

- Hauptseminar I (6 ECTS)
- Hauptseminar II (6 ECTS)

Projektseminar (6 ECTS)

Please refer to the subject for further information and module descriptions.

| Name of node           | Number of node          |
|------------------------|-------------------------|
| Mathematik             | 11LE13KT-FWB-Mathematik |
| Faculty                |                         |
| Faculty of Engineering |                         |

Compulsory/Elective (C/E)

Core elective

## Comment

- In "Mathematik" (mostly in German) you can choose the following courses:
- Algebra und Zahlentheorie (9 ECTS)
- Algebraische Topologie (9 ECTS)
- Computational Finance (6 ECTS)
- Differentialgeometrie (9 ECTS)
- Differentialtopologie (9 ECTS)
- Einführung in Theorie und Numerik partieller Differentialgleichungen (9 ECTS)
- Funktionalanalysis (9 ECTS)
- Funktionentheorie (9 ECTS)
- Kommutative Algebra und Einführung in die Algebraische Geometrie (9 ECTS)
- Kurven und Flächen (9 ECTS)
- Maschinelles Lernen aus stochastischer Sicht (6 ECTS)
- Mathematical Introduction to Deep Learning (6 ECTS)
- Mathematische Modellierung (6 ECTS)
- Mathematische Statistik (9 ECTS)
- Mengenlehre Unabhängigkeitsbeweise (9 ECTS)
- Modelltheorie (9 ECTS)
- Numerik Teil 1 (6 ECTS)
- Numerik Teil 2 (Numerik 1 wird vorausgesetzt) (6 ECTS)
- Optimal Transport (3 ECTS)
- Partielle Differentialgleichungen (9 ECTS)
- Topologie (9 ECTS)
- Variationsrechnung (9 ECTS)
- Wahrscheinlichkeitstheorie (9 ECTS)
- Wahrscheinlichkeitstheorie II (9 ECTS)
- Bochner-Räume (6 ECTS)

NO credits can be earned by the Bachelor courses: Analysis I, Analysis II, Lineare Algebra I, Lineare Algebra II, Mathematische Logik and Stochastik!

Please refer to the subject for further information and module descriptions.

| Name of node           | Number of node       |
|------------------------|----------------------|
| Medizin                | 11LE13KT-FWB Medizin |
| Faculty                |                      |
| Faculty of Engineering |                      |

Compulsory/Elective (C/E)

Core elective

| Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| In "Medizin" (in German only) you can choose the following courses:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Before doing another course, you have to take                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>Ausgewählte Themen zur Mikrosystemtechnik in der Medizin (3 ECTS)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>Then you can choose:</li> <li>Themen der medizinischen Informatik (Master) (3 ECTS) (stark empfohlen, wenn noch nicht im Bachelor absolviert; kann im Master auch nochmal gemacht werden, da Inhalte z.T. unterschiedlich)</li> <li>Struktur, Funktion und Fehlfunktion des menschlichen Organismus - Teil 3 (5 ECTS) **</li> <li>Innere Medizin für Zahnmediziner (3 ECTS) **</li> <li>Allgemeine Chirurgie für Zahnmediziner (1,5 ECTS) **</li> <li>Allgemeine Pathologie für Zahnmediziner (3 ECTS)</li> <li>Pathologisch-histologischer Kurs für Zahnmediziner (1,5 ECTS)</li> <li>Humangenetik für Studierende der Molekularen Medizin (1,5 ECTS)</li> <li>Geschichte, Theorie und Ethik der Medizin (1,5 ECTS)</li> <li>Pharmakologie und Toxikologie für Zahnmediziner Teil 1 (1,5 ECTS)</li> <li>Mikrobiologie für Pharmazeuten (3 ECTS)</li> <li>Seminar Wissenschaftliches Denken und Handeln (3 ECTS) (sofern nicht bereits im BSc absolviert)</li> <li>Projekt an einem medizinschen Lehrstuhl (6 ECTS)</li> </ul> |
| ** (die beiden Zahnmedizin-Veranstaltungen große inhaltliche Überschneidungen mit "Struktur, Funktion<br>und Fehlfunktion des menschlichen Organismus – Teil 3" aufweisen und somit redundant sind, wenn diese<br>Veranstaltung belegt wird)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Please refer to the subject for further information and module descriptions.

| Name of node             | Number of node   |
|--------------------------|------------------|
| Microsystems Engineering | 11LE13KT-FWB-MST |
| Faculty                  |                  |
| Faculty of Engineering   |                  |

Compulsory/Elective (C/E)

Core elective

## Comment

↑

Any MSE course(s) from the selection given in this area in the study planner. Please refer to the subject for further information and module descriptions.

Please note: *NOT* available as a course outside of Computer Science (as they are part of specialization courses in C.S.) are the following MSE courses

- High-Performance Computing: Molecular Dynamics with C++
- High-Performance Computing: Fluid Mechanics with Python
- High-performance computing: Distributed-memory parallelization on GPUs and accelarators
- Optimale Steuerung und Modellprädiktive Regelung / Optimal and Model Predictive Control
- Model Predictive Control

A special role have the modules

- Modellbildung und Systemidentifikation / Modelling and Systems Identification
- Numerical Optimal Control in Science and Engineering
- Numerical Optimization

Please mind the information provided in the respective module descriptions in the section "Usability of the course" in the module version as Specialization Course in Computer Science.

| Name of node           | Number of node            |
|------------------------|---------------------------|
| Neuroscience           | 11LE13KT-FWB Neuroscience |
| Faculty                |                           |
| Faculty of Engineering |                           |

Compulsory/Elective (C/E)

Core elective

## Comment

In "Neuroscience" (in English) you can choose from the following courses:

## Please note:

At least the two lectures "From membrane to brain" and "Computational Neuroscience" (with exercise) are mandatory for this area. Participation in the practical exercise "Simulation of Biological Neuronal Networks" and / or one of the seminars ("Current Research Topics in Systems Neuroscience" or "Language and Brain, Language Ability, Neurobiological Basis") is only permitted if both lectures have been completed.

- From Membrane to Brain (4 ECTS)
- Computational Neuroscience (11 ECTS)
- Simulation of Biological Neuronal Networks (2 ECTS)
- Seminar: Current Research Topics in Systems Neuroscience OR Sprache und Gehirn, Sprachvermögen, neurobiologische Basis (in German) (2 ECTS)

Please refer to the subject for further information and module descriptions.

Ì

| Name of node           | Number of node      |
|------------------------|---------------------|
| Physik                 | 11LE13KT-FWB-Physik |
| Faculty                |                     |
| Faculty of Engineering |                     |

Compulsory/Elective (C/E)

Core elective

| Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>In "Physik" (in German) you can choose the following courses:</li> <li>Experimentalphysik I (Mechanik, Gase und Flüssigkeiten) (6 ECTS) *</li> <li>Experimentalphysik II (Elektromagnetismus, Optik) (6 ECTS) *</li> <li>Experimentalphysik III (Spezielle Relativitätstheorie, Optik, Quantenphysik und Atomphysik) (7 ECTS)</li> <li>Theoretische Physik I (Mechanik und Relativitätstheorie) (7 ECTS)</li> <li>Theoretische Physik II (Elektromagnetismus und Optik) (7 ECTS)</li> <li>* sofern noch nicht im Bachelor absolviert</li> </ul> |
| Please refer to the subject for further information and module descriptions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\uparrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Name of node           | Number of node           |
|------------------------|--------------------------|
| Psychologie            | 11LE13KT-FWB Psychologie |
| Faculty                |                          |
| Faculty of Engineering |                          |

Compulsory/Elective (C/E)

Core elective

## Comment

## Achtung: Nur 3 Studierende pro Jahr! Frühzeitige Anmeldung bei der Studienfachberatung Informatik erforderlich!

In "Psychologie" (in German) you can choose the following courses:

- Sozialpsychologie Vorlesung (5 ECTS)
- Pädagogische Psychologie Vorlesung (5 ECTS)
- Pädagogische Psychologie Seminar (3 ECTS)
- Arbeits- und Organisationspsychologie Vorlesung (5 ECTS)

Please refer to the subject for further information and module descriptions.

| Name of node                    | Number of node   |
|---------------------------------|------------------|
| Sustainable Systems Engineering | 11LE13KT-FWB SSE |
| Faculty                         |                  |
| Faculty of Engineering          |                  |

Compulsory/Elective (C/E)

Core elective

In "Sustainable Systems Engineering" (in English) you can choose the following courses:

- Complex Networks (6 ECTS)
- Design and Monitoring of Large Infrastructures (5 ECTS)
- Netzintegration und Regelung / Grid Integration and Control (5 ECTS)
- The science of complex systems fundamentals and applications (6 ECTS)

Please refer to the subject for further information and module descriptions.

| Name of node           | Number of node    |
|------------------------|-------------------|
| Economics              | 11LE13KT-FWB-WiWi |
| Faculty                |                   |
| Faculty of Engineering |                   |

Compulsory/Elective (C/E)

Core elective

## Comment

In "Economics / Wirtschaftswissenschaften" (some courses in English, some courses in German) you can choose the following courses:

- Computational Economics: Non-linear Optimization (6 ECTS)
- Computational Finance (6 ECTS)
- Business Analytics (6 ECTS)
- Futures and Options (6 ECTS)
- Gesundheitsmanagement (6 ECTS)
- Gesundheitsmanagement Fallstudien im Krankenhausmanagement (6 ECTS)
- Electronic Markets (6 ECTS)
- Marketing Management (6 ECTS)
- Personal- und Organisationstheorien (6 ECTS)
- Principles of Finance (6 ECTS) (10 students per year at most!)
- Unternehmensbesteuerung (6 ECTS)
- Business Analytics (Seminar) (6 ECTS)
- Advanced Macroeconomics I (6 ECTS)
- Advanced Microeconomics I (6 ECTS)
- Advanced Microeconomics II (6 ECTS)
- Economic Policy and Public Choice (6 ECTS)
- Regulation and Competition Policy (4 ECTS)

Please refer to the subject for further information and module descriptions.

| Name of node                                                     | Number of node |
|------------------------------------------------------------------|----------------|
| Weitere genehmigte Module/Veranstaltungen im fachfremden Bereich | 11LE13KT-FWB   |
| Faculty                                                          |                |
| Faculty of Engineering                                           |                |

Compulsory/Elective (C/E)

Core elective

### Comment

As per the examination regulations, exceptions for courses in subjects usually not available might be granted.

Those exceptions must be requested in advance. The application must be submitted formally (i.e. as a letter), with the reason for the choice of the course stated, to the Computer Science program coordinator. It is assumed that the lecturer of the course and the program coordinator for the relevant subject have given their consent to the participation of the Computer Science student. The dean of studies for Computer Science decides on the application.

| Name of node           | Number of node |
|------------------------|----------------|
| Study Project          | 11LE13KT-9140  |
| Faculty                |                |
| Faculty of Engineering |                |

| Compulsory/Elective (C/E) | Compulsory |
|---------------------------|------------|
| ECTS-Points               | 18.0       |

## Comment

Students have to do one study project (18 ECTS credits).

If they want to specialize in the area of Artificial Intelligence (AI) or in Cyber-Physical Systems (CPS), they have to take an according study project with a topic related to the respective area.

| Name of module         | Number of module                            |
|------------------------|---------------------------------------------|
| Studienprojekt         | 11LE13MO-9140 Studienpro-<br>jekt Allgemein |
| Responsible            |                                             |
| Prof. Dr. Hannah Bast  |                                             |
| Faculty                |                                             |
| Faculty of Engineering |                                             |

| ECTS-Points               | 18.0                |
|---------------------------|---------------------|
| Workload                  | 540 Stunden   hours |
| Hours of week             |                     |
| Recommended semester      | 3                   |
| Duration                  |                     |
| Compulsory/Elective (C/E) | Compulsory          |
| Frequency                 | each term           |

### Compulsory requirement

keine | none

Recommended requirement

allgmeine mathematische Grundlagen, praktische und theoretische Grundlagen der Informatik, themenspezifische Vorkenntnisse für den gewählten Themenbereich |

general fundamental mathematical knowledge, practical and theoretical foundations in Computer Science, subject-specific knowledge for the chosen topics

| Assigned Courses         |                                           |                 |      |     |                             |
|--------------------------|-------------------------------------------|-----------------|------|-----|-----------------------------|
| Name                     | Туре                                      | C/E             | ECTS | HoW | Workload                    |
| Studienprojekt Allgemein | Veranstaltung (ohne<br>Deputatanrechnung) | Compul-<br>sory |      |     | 540 Stun-<br>den  <br>hours |

### Qualification

In this module students get involved in the actual research process of the chosen work group/chair. Depending on their personal field of interest and their expertise in various research and teaching areas offered at the Department of Computer Science, they decide on a specific topic and deepen their knowledge and skills in this area as well as their overall proficiency in academic work and research. They learn to work on the different tasks required for the specific project under given technical specifications, to develop appropriate systems and to work constructively in projects.

Students acquire the ability to familiarize themselves with new problems and do indepent background research. They will work with modern development environments and adhere to the generally accepted quality standards. During the project, working in a team as well as observing the rules of good scientific work will be expected.

Examination achievement

The graded assessment is (depending on the topic) either a written research paper (if it is rather a theoretical or fundamentally based topic; length usually maximum 40 pages) or the creation of a software or a demonstrator including a sufficient documentation (according to the scientific standards). Details are agreed upon with the supervisor (usually a person authorized to conduct examinations at the Department of Computer Science) when the topic is assigned.

Course achievement

As a rule, the course work consists of the following components:

- regular attendance of (team) meetings or discussions with the supervisor

- oral presentation (usually 20 - 30 minutes) with subsequent discussion

### Recommendation

Language is usually English, but might be negotiable (changed to German)

Please learn about the procedure of finding a topic and registering for the project in good time. (For instance, see "A to Z - Study FAQ" under "Studies and Teaching" on our faculty website.)

Students are expected to self-organize the given tasks and do background research.

Usability

Compulsory module for students of the study program

M.Sc. Informatik / Computer Science (2020)

If a specialization is intended, students have to take the study project in the respective specialization area (AI or CPS).

| Name of module                         | Number of module                            |
|----------------------------------------|---------------------------------------------|
| Studienprojekt                         | 11LE13MO-9140 Studienpro-<br>jekt Allgemein |
| course group                           |                                             |
| Studienprojekt Allgemein               |                                             |
| Event type                             | Number                                      |
| Veranstaltung (ohne Deputatanrechnung) | 11LE13VG-9140 Studienpro-<br>jekt-Allgemein |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Workload                  | 540 Stunden   hours             |
| Attendance                | ca. 20 Stunden                  |
| Independent study         | ca. 520 Stunden                 |
| Hours of week             |                                 |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Compulsory                      |
| Languages                 | german, english                 |

## Contents

Students choose a specific topic (according to their personal interest and present field of expertise) from one of the research and teaching areas offered at the Department of Computer Science. They work independently under a supervisor and connected to the research team on subject specific tasks, gaining experience with scientific work and working with state-of-the-art development environments or lab equipment.

Examination achievement

Siehe Modulebene | See module level

Course achievement

Siehe Modulebene | See module level

#### Literature

Depends on topic; provided by the supvervisor

Compulsory requirement

keine | none

Recommended requirement

allgmeine mathematische Grundlagen, praktische und theoretische Grundlagen der Informatik, themenspezifische Vorkenntnisse für den gewählten Themenbereich |

general fundamental mathematical knowledge, practical and theoretical foundations in Computer Science, subject-specific knowledge for the chosen topics

| Name of module         | Number of module |
|------------------------|------------------|
| Studienprojekt KI      | 11LE13MO-9140KI  |
| Responsible            |                  |
| Prof. Dr. Hannah Bast  |                  |
| Faculty                |                  |
| Faculty of Engineering |                  |

| ECTS-Points               | 18.0                |
|---------------------------|---------------------|
| Workload                  | 540 Stunden   hours |
| Hours of week             |                     |
| Recommended semester      | 3                   |
| Duration                  |                     |
| Compulsory/Elective (C/E) | Compulsory          |
| Frequency                 | each term           |

keine | none

Recommended requirement

allgmeine mathematische Grundlagen, praktische und theoretische Grundlagen der Informatik, themenspezifische Vorkenntnisse aus dem Bereich der Künstlichen Intelligenz |

general fundamental mathematical knowledge, practical and theoretical foundations in Computer Science, subject-specific knowledge for the field of Artificial Intelligence

| Assigned Courses             |       |                 |      |     |                             |
|------------------------------|-------|-----------------|------|-----|-----------------------------|
| Name                         | Туре  | C/E             | ECTS | HoW | Workload                    |
| Studienprojekt im Bereich KI | U U U | Compul-<br>sory |      |     | 540 Stun-<br>den  <br>hours |

## Qualification

In this module students get involved in the actual research process of the chosen work group/chair, specifically in the area of Artificial Intelligence.

Depending on their personal field of interest and their expertise in various research and teaching areas connected to AI and offered at the Department of Computer Science, they decide on a specific topic and deepen their knowledge and skills in this area as well as their overall proficiency in academic work and research. They learn to work on the different tasks required for the specific project under given technical specifications, to develop appropriate systems and to work constructively in projects.

Students acquire the ability to familiarize themselves with new problems and do indepent background research. They will work with modern development environments and adhere to the generally accepted quality standards. During the project, working in a team as well as observing the rules of good scientific work will be expected.

Examination achievement

The graded assessment is (depending on the topic) either a written research paper (if it is rather a theoretical or fundamentally based topic; length usually maximum 40 pages) or the creation of a software or a demonstrator including a sufficient documentation (according to the scientific standards). Details are agreed upon with the supervisor (usually a person authorized to conduct examinations at the Department of Computer Science) when the topic is assigned.

Course achievement

As a rule, the course work consists of the following components:

- regular attendance of (team) meetings or discussions with the supervisor

- oral presentation (usually 20 - 30 minutes) with subsequent discussion

Recommendation

Language is usually English, but might be negotiable (changed to German)

Please learn about the procedure of finding a topic and registering for the project in good time. (For instance, see "A to Z - Study FAQ" under "Studies and Teaching" on our faculty website.)

Students are expected to self-organize the given tasks and do background research.

#### Usability

Compulsory module for students of the study program

M.Sc. Informatik / Computer Science (2020) for students intending a specialization in AI.

If no specialization is intended, students have to take the general study project "Studienprojekt Allgemein"

 $\left| \right|$ 

| Name of module                         | Number of module                       |  |  |  |
|----------------------------------------|----------------------------------------|--|--|--|
| Studienprojekt KI                      | 11LE13MO-9140KI                        |  |  |  |
| course group                           |                                        |  |  |  |
| Studienprojekt im Bereich KI           |                                        |  |  |  |
| Event type                             | Number                                 |  |  |  |
| Veranstaltung (ohne Deputatanrechnung) | 11LE13VG-9140KI-Studien-<br>projekt-KI |  |  |  |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Workload                  | 540 Stunden   hours             |
| Attendance                | ca. 20 Stunden                  |
| Independent study         | ca. 520 Stunden                 |
| Hours of week             |                                 |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Compulsory                      |

### Contents

Students choose a specific topic (according to their personal interest and present field of expertise) from one of the research and teaching areas connected to the field of Artificial Intelligence and offered at the Department of Computer Science.

They work independently under a supervisor and connected to the research team on subject specific tasks, gaining experience with scientific work and working with state-of-the-art development environments or lab equipment.

Examination achievement

Depending on specific project: written research paper or creation of a software program or demonstrators

Course achievement

Active participation (attendance can be required) in (team) discussions or meetings with the supervisor, selforganizing the given tasks, doing background research, presentation of results

Literature

Depends on topic; provided by the supvervisor

Compulsory requirement

keine | none

**Recommended requirement** 

allgmeine mathematische Grundlagen, praktische und theoretische Grundlagen der Informatik, themenspezifische Vorkenntnisse aus dem Bereich der Künstlichen Intelligenz | general fundamental mathematical knowledge, practical and theoretical foundations in Computer Science,

subject-specific knowledge for the field of Artificial Intelligence

ſ

| Name of module         | Number of module  |
|------------------------|-------------------|
| Studienprojekt CPS     | 11LE13MO-9140 CPS |
| Responsible            |                   |
| Prof. Dr. Hannah Bast  |                   |
| Faculty                |                   |
| Faculty of Engineering |                   |

| ECTS-Points               | 18.0                |
|---------------------------|---------------------|
| Workload                  | 540 Stunden   hours |
| Hours of week             |                     |
| Recommended semester      | 3                   |
| Duration                  |                     |
| Compulsory/Elective (C/E) | Compulsory          |
| Frequency                 | each term           |

keine | none

Recommended requirement

allgmeine mathematische Grundlagen, praktische und theoretische Grundlagen der Informatik, themenspezifische Vorkenntnisse aus dem Bereich der Cyber-Physical Systems |

general fundamental mathematical knowledge, practical and theoretical foundations in Computer Science, subject-specific knowledge for the field of Cyber-Physial Systems

| Assigned Courses              |       |                 |      |     |                             |
|-------------------------------|-------|-----------------|------|-----|-----------------------------|
| Name                          | Туре  | C/E             | ECTS | HoW | Workload                    |
| Studienprojekt im Bereich CPS | U U U | Compul-<br>sory |      |     | 540 Stun-<br>den  <br>hours |

## Qualification

In this module students get involved in the actual research process of the chosen work group/chair, specifically in the area of Cyber-Physical Systems.

Depending on their personal field of interest and their expertise in various research and teaching areas connected to CPS and Embedded Systems and offered at the Department of Computer Science, they decide on a specific topic and deepen their knowledge and skills in this area as well as their overall proficiency in academic work and research. They learn to work on the different tasks required for the specific project under given technical specifications, to develop appropriate systems and to work constructively in projects.

Students acquire the ability to familiarize themselves with new problems and do indepent background research. They will work with modern development environments and adhere to the generally accepted quality standards. During the project, working in a team as well as observing the rules of good scientific work will be expected.

Examination achievement

The graded assessment is (depending on the topic) either a written research paper (if it is rather a theoretical or fundamentally based topic; length usually maximum 40 pages) or the creation of a software or a demonstrator including a sufficient documentation (according to the scientific standards). Details are agreed upon with the supervisor (usually a person authorized to conduct examinations at the Department of Computer Science) when the topic is assigned.

Course achievement

As a rule, the course work consists of the following components:

- regular attendance of (team) meetings or discussions with the supervisor

- oral presentation (usually 20 - 30 minutes) with subsequent discussion

Recommendation

Language is usually English, but might be negotiable (changed to German)

Please learn about the procedure of finding a topic and registering for the project in good time. (For instance, see "A to Z - Study FAQ" under "Studies and Teaching" on our faculty website.)

Students are expected to self-organize the given tasks and do background research.

#### Usability

Compulsory module for students of the study program

M.Sc. Informatik / Computer Science (2020) for students intending a specialization in CPS.

If no specialization is intended, students have to take the general study project "Studienprojekt Allgemein"

 $\left| \right|$ 

| Name of module                         | Number of module                         |  |  |  |
|----------------------------------------|------------------------------------------|--|--|--|
| Studienprojekt CPS                     | 11LE13MO-9140 CPS                        |  |  |  |
| course group                           |                                          |  |  |  |
| Studienprojekt im Bereich CPS          |                                          |  |  |  |
| Event type                             | Number                                   |  |  |  |
| Veranstaltung (ohne Deputatanrechnung) | 11LE13VG-9140CPS-Studien-<br>projekt-CPS |  |  |  |

| ECTS-Points               |                                 |
|---------------------------|---------------------------------|
| Workload                  | 540 Stunden   hours             |
| Attendance                | ca. 20 Stunden                  |
| Independent study         | ca. 520 Stunden                 |
| Hours of week             |                                 |
| Recommended semester      |                                 |
| Frequency                 | takes place once or irregularly |
| Compulsory/Elective (C/E) | Compulsory                      |
| Languages                 | german, english                 |

#### Contents

Students choose a specific topic (according to their personal interest and present field of expertise) from one of the research and teaching areas connected to the field of Cyber-Physical Systems/Embedded Systems and offered at the Department of Computer Science.

They work independently under a supervisor and connected to the research team on subject specific tasks, gaining experience with scientific work and working with state-of-the-art development environments or lab equipment.

**Examination achievement** 

Depending on specific project: written research paper or creation of a software program or demonstrators

## Course achievement

Active participation (attendance can be required) in (team) discussions or meetings with the supervisor, selforganizing the given tasks, doing background research, presentation of results

Literature

Depends on topic; provided by the supvervisor

Compulsory requirement

keine | none

Recommended requirement

allgmeine mathematische Grundlagen, praktische und theoretische Grundlagen der Informatik, themenspezifische Vorkenntnisse aus dem Bereich der Cyber-Physical Systems | general fundamental mathematical knowledge, practical and theoretical foundations in Computer Science, subject-specific knowledge for the field of Cyber-Physial Systems

## Epilogue Modules in the context of the study areas

The **Advanced Lectures (6 or 12 ECTS)** encompass the following seven specific lectures: Software Engineering, Foundations of Artificial Intelligence, Image Processing and Computer Graphics, Algorithms Theory, Databases and Information Systems, Machine Learning, and Computer Architecture. These lectures serve as foundations for the thematically related specialization courses as they provide the basic concepts and introductory knowledge in the respective fields. If students are interested in a certain area as their personal field of expertise, while not mandatory as prerequisites it is strongly recommended to complete the according Advanced Lecture before deepening their knowledge in specialization courses, especially if they have no previous knowledge or qualifications in the respective area.

**Specialization courses (36 o 30 ECTS)** generally represent the research and teaching areas of the professors at the Department of Computer Science in Freiburg.

There is a big variety of different topics covered by about 50 Specialization Courses, roughly summarized in the following subject areas:

- Algorithms / Bioinformatics
- Computer Architecture / Operating Systems /Embedded Systems
- Software / Programming Languages
- Artificial Intelligence / Robotics / Machine Learning
- Computer vision / Computer graphics
- Network / communication
- Data bases

A special subset of the specialization courses is provided in relation to the two specialization areas: Artificial Intelligence and Cyber-Physical Systems. Students planning to specialize in one of these areas have to take at least 4 related courses. Generally, students can select any specialization course if they are confident to bring the required basics. This way, they acquire an individually chosen skill set to form their personal competency profile.

In the two **Seminars (6 ECTS)** students improve their research skills and develop further scientific qualifications relevant for a future academic career. The acquired interdisciplinary skills are also beneficial for professional qualifications. Topics vary every semester, as lecturers like to keep the content of the seminars up-todate with their current research.

The **Lab Course (6 ECTS)** can be chosen from different thematic backgrounds, to complement the so far created skill profile of the students. With a hands-on approach, it provides practical experience and transfers the previously mostly theoretical concepts and methods into applications for real-life problems.

In the **Study Project (18 ECTS)** students work supervised, but independently on a current research topic in one of the workgroups / chairs of the department. This module is very similar to the Thesis, in regards to the expected skills and knowledge as well as technical and organizational aspects. As it has to be completed before the Thesis can be started, it can be used as ground work, building upon the results and experience already gained. As the formal requirements are less strict and more flexible, it can be seen as a trial run for the Thesis, reducing performance pressure by having familiarized with some steps already.

The **Customized Course Selection (18 ECTS)** serves to further develop a personal profile and offers different choices. While students are expected to broaden their view by gaining insight into one or more subjects outside the area of computer science, they can also take one additional computer science lecture here. Anyways, as computer scientists often work in interdisciplinary groups with experts from other subjects, it is

beneficial to have some basic knowledge and qualifications in a possible application area like Bioinformatics, Economics, Microsystems or Sustainable Systems Engineering, Medical Science or Neuroscience. So taking some courses from subjects outside of computer science is mandatory. Students can either choose to concentrate on one subject and taking multiple courses there or to mix basic courses from different subjects to create an individual profile.